Cargando…
Learning the kernel for rare variant genetic association test
Introduction: Compared to Genome-Wide Association Studies (GWAS) for common variants, single-marker association analysis for rare variants is underpowered. Set-based association analyses for rare variants are powerful tools that capture some of the missing heritability in trait association studies....
Autores principales: | Falk, Isak, Zhao, Millie, Nait Saada, Juba, Guo, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598548/ https://www.ncbi.nlm.nih.gov/pubmed/37886683 http://dx.doi.org/10.3389/fgene.2023.1245238 |
Ejemplares similares
-
Identity-by-descent detection across 487,409 British samples reveals fine scale population structure and ultra-rare variant associations
por: Nait Saada, Juba, et al.
Publicado: (2020) -
Inference of Coalescence Times and Variant Ages Using Convolutional Neural Networks
por: Nait Saada, Juba, et al.
Publicado: (2023) -
Multivariate Information Fusion With Fast Kernel Learning to Kernel Ridge Regression in Predicting LncRNA-Protein Interactions
por: Shen, Cong, et al.
Publicado: (2019) -
Associating rare genetic variants with human diseases
por: Zhang, Qunyuan
Publicado: (2015) -
Rare Variants Detection with Kernel Machine Learning Based on Likelihood Ratio Test
por: Zeng, Ping, et al.
Publicado: (2014)