Cargando…
Biologically plausible local synaptic learning rules robustly implement deep supervised learning
In deep neural networks, representational learning in the middle layer is essential for achieving efficient learning. However, the currently prevailing backpropagation learning rules (BP) are not necessarily biologically plausible and cannot be implemented in the brain in their current form. Therefo...
Autores principales: | Konishi, Masataka, Igarashi, Kei M., Miura, Keiji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598703/ https://www.ncbi.nlm.nih.gov/pubmed/37886676 http://dx.doi.org/10.3389/fnins.2023.1160899 |
Ejemplares similares
-
Biologically Plausible Training Mechanisms for Self-Supervised Learning in Deep Networks
por: Tang, Mufeng, et al.
Publicado: (2022) -
Synaptic balancing: A biologically plausible local learning rule that provably increases neural network noise robustness without sacrificing task performance
por: Stock, Christopher H., et al.
Publicado: (2022) -
A biologically plausible learning rule for the Infomax on recurrent neural networks
por: Hayakawa, Takashi, et al.
Publicado: (2014) -
Meta-learning biologically plausible plasticity rules with random feedback pathways
por: Shervani-Tabar, Navid, et al.
Publicado: (2023) -
Biological plausibility of kernel-based learning
por: Fortney, Kristen, et al.
Publicado: (2007)