Cargando…
Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas
We develop a methodology to create data-driven predictive digital twins for optimal risk-aware clinical decision-making. We illustrate the methodology as an enabler for an anticipatory personalized treatment that accounts for uncertainties in the underlying tumor biology in high-grade gliomas, where...
Autores principales: | Chaudhuri, Anirban, Pash, Graham, Hormuth, David A., Lorenzo, Guillermo, Kapteyn, Michael, Wu, Chengyue, Lima, Ernesto A. B. F., Yankeelov, Thomas E., Willcox, Karen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598726/ https://www.ncbi.nlm.nih.gov/pubmed/37886348 http://dx.doi.org/10.3389/frai.2023.1222612 |
Ejemplares similares
-
Evaluating and selecting arguments in the context of higher order uncertainty
por: Straßer, Christian, et al.
Publicado: (2023) -
Understanding the need for digital twins’ data in patient advocacy and forecasting oncology
por: Chang, Hung-Ching, et al.
Publicado: (2023) -
CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin
por: Zotov, Evgeny, et al.
Publicado: (2021) -
Information Theoretic Characterization of Uncertainty Distinguishes Surprise From Accuracy Signals in the Brain
por: Loued-Khenissi, Leyla, et al.
Publicado: (2020) -
General-Purpose Bayesian Tensor Learning With Automatic Rank Determination and Uncertainty Quantification
por: Zhang, Kaiqi, et al.
Publicado: (2022)