Cargando…

Aspartate metabolic flux promotes nitric oxide to eliminate both antibiotic-sensitive and -resistant Edwardsiella tarda in zebrafish

INTRODUCTION: Metabolic reprogramming potentiates host protection against antibiotic-sensitive or -resistant bacteria. However, it remains unclear whether a single reprogramming metabolite is effective enough to combat both antibiotic-sensitive and -resistant bacteria. This knowledge is key for impl...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Jiao, Li, Min-yi, Li, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598754/
https://www.ncbi.nlm.nih.gov/pubmed/37885884
http://dx.doi.org/10.3389/fimmu.2023.1277281
Descripción
Sumario:INTRODUCTION: Metabolic reprogramming potentiates host protection against antibiotic-sensitive or -resistant bacteria. However, it remains unclear whether a single reprogramming metabolite is effective enough to combat both antibiotic-sensitive and -resistant bacteria. This knowledge is key for implementing an antibiotic-free approach. METHODS: The reprogramming metabolome approach was adopted to characterize the metabolic state of zebrafish infected with tetracycline-sensitive and -resistant Edwardsiella tarda and to identify overlapping depressed metabolite in dying zebrafish as a reprogramming metabolite. RESULTS: Aspartate was identify overlapping depressed metabolite in dying zebrafish as a reprogramming metabolite. Exogenous aspartate protects zebrafish against infection caused by tetracycline-sensitive and -resistant E. tarda. Mechanistically, exogenous aspartate promotes nitric oxide (NO) biosynthesis. NO is a well-documented factor of promoting innate immunity against bacteria, but whether it can play a role in eliminating both tetracycline-sensitive and -resistant E. tarda is unknown. Thus, in this study, aspartate was replaced with sodium nitroprusside to provide NO, which led to similar aspartate-induced protection against tetracycline-sensitive and -resistant E. tarda. DISCUSSION: These findings support the conclusion that aspartate plays an important protective role through NO against both types of E. tarda. Importantly, we found that tetracycline-sensitive and -resistant E. tarda are sensitive to NO. Therefore, aspartate is an effective reprogramming metabolite that allows implementation of an antibiotic-free approach against bacterial pathogens.