Cargando…
Retrospective T2 quantification from conventional weighted MRI of the prostate based on deep learning
PURPOSE: To develop a deep learning-based method to retrospectively quantify T2 from conventional T1- and T2-weighted images. METHODS: Twenty-five subjects were imaged using a multi-echo spin-echo sequence to estimate reference prostate T2 maps. Conventional T1- and T2-weighted images were acquired...
Autores principales: | Sun, Haoran, Wang, Lixia, Daskivich, Timothy, Qiu, Shihan, Han, Fei, D'Agnolo, Alessandro, Saouaf, Rola, Christodoulou, Anthony G., Kim, Hyung, Li, Debiao, Xie, Yibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598780/ https://www.ncbi.nlm.nih.gov/pubmed/37886239 http://dx.doi.org/10.3389/fradi.2023.1223377 |
Ejemplares similares
-
Retrospective quantification of clinical abdominal DCE-MRI using pharmacokinetics-informed deep learning: a proof-of-concept study
por: Wu, Chaowei, et al.
Publicado: (2023) -
Prospective Pilot Trial to Evaluate a High Resolution Diffusion-Weighted MRI in Prostate Cancer Patients
por: Sharif-Afshar, Ali-Reza, et al.
Publicado: (2016) -
Genes involved in prostate cancer progression determine MRI visibility
por: Li, Ping, et al.
Publicado: (2018) -
Preoperative Prediction of Intracranial Meningioma Grade Using Conventional CT and MRI
por: Amano, Toshiyuki, et al.
Publicado: (2022) -
Free-breathing non-contrast MRA with efficiency-adaptive self navigation
por: Xie, Yibin, et al.
Publicado: (2013)