Cargando…

Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters

[Image: see text] Structural characterization of nanoclusters is one of the major challenges in nanocluster modeling owing to the multitude of possible configurations of arrangement of cluster atoms. The genetic algorithm (GA), a class of evolutionary algorithms based on the principles of natural ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Raju, Rajesh K., Sivakumar, Saurabh, Wang, Xiaoxiao, Ulissi, Zachary W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598790/
https://www.ncbi.nlm.nih.gov/pubmed/37824704
http://dx.doi.org/10.1021/acs.jcim.3c01431
_version_ 1785125632392298496
author Raju, Rajesh K.
Sivakumar, Saurabh
Wang, Xiaoxiao
Ulissi, Zachary W.
author_facet Raju, Rajesh K.
Sivakumar, Saurabh
Wang, Xiaoxiao
Ulissi, Zachary W.
author_sort Raju, Rajesh K.
collection PubMed
description [Image: see text] Structural characterization of nanoclusters is one of the major challenges in nanocluster modeling owing to the multitude of possible configurations of arrangement of cluster atoms. The genetic algorithm (GA), a class of evolutionary algorithms based on the principles of natural evolution, is a commonly employed search method for locating the global minimum configuration of nanoclusters. Although a GA search at the DFT level is required for the accurate description of a potential energy surface to arrive at the correct global minimum configuration of nanoclusters, computationally expensive DFT evaluation of the significantly larger number of cluster geometries limits its practicability. Recently, machine learning potentials (MLP) that are learned from DFT calculations gained significant attention as computationally cheap alternative options that provide DFT level accuracy. As the accuracy of the MLP predictions is dependent on the quality and quantity of the training DFT data, active learning (AL) strategies have gained significant momentum to bypass the need of large and representative training data. In this application note, we present Cluster-MLP, an on-the-fly active learning genetic algorithm framework that employs the Flare++ machine learning potential (MLP) for accelerating the GA search for global minima of pure and alloyed nanoclusters. We have used a modified version the Birmingham parallel genetic algorithm (BPGA) for the nanocluster GA search which is then incorporated into distributed evolutionary algorithms in Python (DEAP), an evolutionary computational framework for fast prototyping or technical experiments. We have shown that the incorporation of the AL framework in the BPGA significantly reduced the computationally expensive DFT calculations. Moreover, we have shown that both the AL-GA and DFT-GA predict the same global minima for all the clusters we tested.
format Online
Article
Text
id pubmed-10598790
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-105987902023-10-26 Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters Raju, Rajesh K. Sivakumar, Saurabh Wang, Xiaoxiao Ulissi, Zachary W. J Chem Inf Model [Image: see text] Structural characterization of nanoclusters is one of the major challenges in nanocluster modeling owing to the multitude of possible configurations of arrangement of cluster atoms. The genetic algorithm (GA), a class of evolutionary algorithms based on the principles of natural evolution, is a commonly employed search method for locating the global minimum configuration of nanoclusters. Although a GA search at the DFT level is required for the accurate description of a potential energy surface to arrive at the correct global minimum configuration of nanoclusters, computationally expensive DFT evaluation of the significantly larger number of cluster geometries limits its practicability. Recently, machine learning potentials (MLP) that are learned from DFT calculations gained significant attention as computationally cheap alternative options that provide DFT level accuracy. As the accuracy of the MLP predictions is dependent on the quality and quantity of the training DFT data, active learning (AL) strategies have gained significant momentum to bypass the need of large and representative training data. In this application note, we present Cluster-MLP, an on-the-fly active learning genetic algorithm framework that employs the Flare++ machine learning potential (MLP) for accelerating the GA search for global minima of pure and alloyed nanoclusters. We have used a modified version the Birmingham parallel genetic algorithm (BPGA) for the nanocluster GA search which is then incorporated into distributed evolutionary algorithms in Python (DEAP), an evolutionary computational framework for fast prototyping or technical experiments. We have shown that the incorporation of the AL framework in the BPGA significantly reduced the computationally expensive DFT calculations. Moreover, we have shown that both the AL-GA and DFT-GA predict the same global minima for all the clusters we tested. American Chemical Society 2023-10-12 /pmc/articles/PMC10598790/ /pubmed/37824704 http://dx.doi.org/10.1021/acs.jcim.3c01431 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Raju, Rajesh K.
Sivakumar, Saurabh
Wang, Xiaoxiao
Ulissi, Zachary W.
Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
title Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
title_full Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
title_fullStr Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
title_full_unstemmed Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
title_short Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
title_sort cluster-mlp: an active learning genetic algorithm framework for accelerated discovery of global minimum configurations of pure and alloyed nanoclusters
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598790/
https://www.ncbi.nlm.nih.gov/pubmed/37824704
http://dx.doi.org/10.1021/acs.jcim.3c01431
work_keys_str_mv AT rajurajeshk clustermlpanactivelearninggeneticalgorithmframeworkforaccelerateddiscoveryofglobalminimumconfigurationsofpureandalloyednanoclusters
AT sivakumarsaurabh clustermlpanactivelearninggeneticalgorithmframeworkforaccelerateddiscoveryofglobalminimumconfigurationsofpureandalloyednanoclusters
AT wangxiaoxiao clustermlpanactivelearninggeneticalgorithmframeworkforaccelerateddiscoveryofglobalminimumconfigurationsofpureandalloyednanoclusters
AT ulissizacharyw clustermlpanactivelearninggeneticalgorithmframeworkforaccelerateddiscoveryofglobalminimumconfigurationsofpureandalloyednanoclusters