Cargando…
Interpretable machine learning models for predicting venous thromboembolism in the intensive care unit: an analysis based on data from 207 centers
BACKGROUND: Venous thromboembolism (VTE) is a severe complication in critically ill patients, often resulting in death and long-term disability and is one of the major contributors to the global burden of disease. This study aimed to construct an interpretable machine learning (ML) model for predict...
Autores principales: | Guan, Chengfu, Ma, Fuxin, Chang, Sijie, Zhang, Jinhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598960/ https://www.ncbi.nlm.nih.gov/pubmed/37875995 http://dx.doi.org/10.1186/s13054-023-04683-4 |
Ejemplares similares
-
Application of Machine Learning to the Prediction of Cancer-Associated Venous Thromboembolism
por: Mantha, Simon, et al.
Publicado: (2023) -
Prevalence of Venous Thromboembolism in Intensive Care Units: A Meta-Analysis
por: Gao, Xiaoyu, et al.
Publicado: (2022) -
Levels in $^{207}$Po populated in the decay of $^{207}$At
por: Jonson, B, et al.
Publicado: (1970) -
Levels in $^{207}Po$ populated in the decay of $^{207}At$
por: Jonson, B, et al.
Publicado: (1971) -
The decay $^{207}_{80}$Hg --> $^{207}_{81}$Tl
por: Jonson, B, et al.
Publicado: (1981)