Cargando…

Effects of vasicine in neuroinflammatory zebrafish model

Chronic neuroinflammation produces cytotoxic effects and aggravates neurodegeneration. Cognitive impairment was considered an early symptom of many neurodegenerative diseases. Therefore, it is of interest to evaluate the in-vivo efficacy of vasicine for treating neuroinflammation-induced cognitive i...

Descripción completa

Detalles Bibliográficos
Autores principales: Arthi, Balasundaram, Chellathai, Darling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599672/
https://www.ncbi.nlm.nih.gov/pubmed/37886147
http://dx.doi.org/10.6026/97320630019595
Descripción
Sumario:Chronic neuroinflammation produces cytotoxic effects and aggravates neurodegeneration. Cognitive impairment was considered an early symptom of many neurodegenerative diseases. Therefore, it is of interest to evaluate the in-vivo efficacy of vasicine for treating neuroinflammation-induced cognitive impairments in the zebrafish model. The Neurobehavioral activity was evaluated with a dive tank test, swim motion test, plus maze test, turn angle test, and color preference test in three neuroinflammatory zebrafish models. Gene expression analysis was done for neuroinflammatory markers (IL-10, IL-15, IL-13, NogoA, Fetuin-A, BDNF, NAA, CXCL2, Osteopontin) using polymerase chain reaction and gel electrophoresis technique. Behavioral parameters and biochemical evaluations revealed that vasicine was effective in treatment against neuroinflammatory models of surgery, chemical, xenotransplantation. Attenuation of cognitive dysfunction in all three neuroinflammation zebrafish models by vasicine in this study may recommend vasicine as a potential molecule for treating neuroinflammatory and neurodegenerative diseases.