Cargando…
PLCL1 suppresses tumour progression by regulating AMPK/mTOR-mediated autophagy in renal cell carcinoma
Autophagy has been increasingly recognized as a critical regulatory mechanism in the maintenance of cellular homeostasis. A previous study showed that phospholipase C-like protein 1 (PLCL1) is associated with lipid metabolism in renal cell carcinoma (RCC). However, it is unclear whether PLCL1 regula...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599749/ https://www.ncbi.nlm.nih.gov/pubmed/37801481 http://dx.doi.org/10.18632/aging.205085 |
Sumario: | Autophagy has been increasingly recognized as a critical regulatory mechanism in the maintenance of cellular homeostasis. A previous study showed that phospholipase C-like protein 1 (PLCL1) is associated with lipid metabolism in renal cell carcinoma (RCC). However, it is unclear whether PLCL1 regulates autophagy, thereby influencing the progression of RCC. Bioinformatics analysis of five microarray datasets revealed that expression of PLCL1 is decreased in tumours and is positively correlated with prognosis in RCC patients. Three independent public datasets, clinical RCC tissues and RCC cell lines, were validated using real-time qPCR, western blotting and immunohistochemistry. Using wound healing and transwell assays, we observed that elevated PLCL1 levels decreased the migratory distance and the invasive number of 786-O and ACHN cells, but PLCL1 knockdown reversed these changes in 769P cell lines compared to those in controls. The results of flow cytometry analysis indicated that PLCL1 promotes apoptosis. Moreover, transcriptional analysis based on stable overexpression of PLCL1 in 786-O cells revealed that PLCL1 is related to autophagy, and western blotting and autophagic experimental results further verified these findings. Mechanistic investigations confirmed that PLCL1 activates the AMPK/mTOR pathway and interacts with decidual protein induced by progesterone (DEPP). Collectively, our data suggest that PLCL1 functions as a suppressor of RCC progression by activating the AMPK/mTOR pathway, interacting with DEPP, initiating autophagy and inducing apoptosis. PLCL1 may be a promising therapeutic target for the diagnosis and treatment of ccRCC patients. |
---|