Cargando…
Mass distribution and shape influence the perceived weight of objects
Research suggests that the rotational dynamics of an object underpins our perception of its weight. We examine the generalisability of that account using a more ecologically valid way of manipulating an object’s mass distribution (mass concentrated either at the top, bottom, centre, near the edges o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600029/ https://www.ncbi.nlm.nih.gov/pubmed/37735298 http://dx.doi.org/10.3758/s13414-023-02780-8 |
Sumario: | Research suggests that the rotational dynamics of an object underpins our perception of its weight. We examine the generalisability of that account using a more ecologically valid way of manipulating an object’s mass distribution (mass concentrated either at the top, bottom, centre, near the edges or evenly distributed throughout the object), shape (cube or sphere), and lifting approach (lifting directly by the hand or indirectly using a handle or string). The results were in line with our predictions. An interaction effect was found where the mass distribution and lifting approach both associated with the lowest rotational dynamics made the stimulus appear lighter compared to other combinations. These findings demonstrate rotational dynamic effects in a more run-of-the-mill experience of weight perception than what has been demonstrated before using cumbersome stimuli. |
---|