Cargando…
Extreme image transformations affect humans and machines differently
Some recent artificial neural networks (ANNs) claim to model aspects of primate neural and human performance data. Their success in object recognition is, however, dependent on exploiting low-level features for solving visual tasks in a way that humans do not. As a result, out-of-distribution or adv...
Autores principales: | Malik, Girik, Crowder, Dakarai, Mingolla, Ennio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600046/ https://www.ncbi.nlm.nih.gov/pubmed/37310489 http://dx.doi.org/10.1007/s00422-023-00968-7 |
Ejemplares similares
-
Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion
por: Chandler, Benjamin, et al.
Publicado: (2016) -
Representation of motion onset and offset in an augmented Barlow-Levick model of motion detection
por: Barnes, Timothy, et al.
Publicado: (2012) -
Active Gaze Control Improves Optic Flow-Based Segmentation and Steering
por: Raudies, Florian, et al.
Publicado: (2012) -
Tuning Properties of MT and MSTd and Divisive Interactions for Eye-Movement Compensation
por: Cao, Bo, et al.
Publicado: (2015) -
Modeling the influence of optic flow on grid cell firing in the absence of other cues(1)
por: Raudies, Florian, et al.
Publicado: (2012)