Cargando…
Bio-inspired, task-free continual learning through activity regularization
The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have been devised. However, these usually requi...
Autores principales: | Lässig, Francesco, Aceituno, Pau Vilimelis, Sorbaro, Martino, Grewe, Benjamin F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600047/ https://www.ncbi.nlm.nih.gov/pubmed/37589728 http://dx.doi.org/10.1007/s00422-023-00973-w |
Ejemplares similares
-
Learning cortical hierarchies with temporal Hebbian updates
por: Aceituno, Pau Vilimelis, et al.
Publicado: (2023) -
Tailoring Echo State Networks for Optimal Learning
por: Aceituno, Pau Vilimelis, et al.
Publicado: (2020) -
Spiking time-dependent plasticity leads to efficient coding of predictions
por: Vilimelis Aceituno, Pau, et al.
Publicado: (2019) -
Bio-inspired networking
por: Câmara, Daniel
Publicado: (2015) -
Zero-shot model-free learning of periodic movements for a bio-inspired soft-robotic arm
por: Oikonomou, Paris, et al.
Publicado: (2023)