Cargando…

An analysis of impact load and fragmentation dimension to explore energy dissipation patterns in coal crushing

This research delineates the energy dissipation characteristics in coal crushing under impact loads, leveraging the capabilities of Separated Hopkinson Pressure Bar experimental system. A meticulous examination of both burst-prone and non-burst-prone coal samples during destruction processes was und...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiao-He, Jing, Wu, Zhang, Wen-Bo, Wang, Jiang-Hao, Yun, Qing-Long, Wang, Yi-Qing, Yi, Sui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600144/
https://www.ncbi.nlm.nih.gov/pubmed/37880353
http://dx.doi.org/10.1038/s41598-023-45422-7
Descripción
Sumario:This research delineates the energy dissipation characteristics in coal crushing under impact loads, leveraging the capabilities of Separated Hopkinson Pressure Bar experimental system. A meticulous examination of both burst-prone and non-burst-prone coal samples during destruction processes was undertaken to decipher the dynamic compression mechanical attributes from perspectives of energy and fragmentatio‘s fractal dimensions. Burst-prone coal showcases a more pronounced escalation in fragmentation work in comparison to non-burst-prone samples, thereby illustrating a perceptible strain-rate dependent effect correlating with enhanced strain rates. Additionally, it was observed that incident, reflected, and transmitted energy trajectories for both sample categories follow an approximately linear ascendancy, albeit exhibiting diverse magnitudes. Burst-prone coal manifests a more rapid and focused energy growth compared to its non-burst-prone counterpart. When subjected to impact loads, a notable trend was discerned where the fragmentation’s fractional dimension escalated persistently with both the incident energy and the crushing work, portraying a prominent growth effect. The insights garnered from this study pave the way for distinguishing between impacted and unimpacted coal samples using energy perspectives and fragmentation's fractal dimensions.