Cargando…
QAmplifyNet: pushing the boundaries of supply chain backorder prediction using interpretable hybrid quantum-classical neural network
Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. Traditional machine-learning models struggle with large-scale datasets and complex relationships. This research introduces a novel methodological fra...
Autores principales: | Jahin, Md Abrar, Shovon, Md Sakib Hossain, Islam, Md. Saiful, Shin, Jungpil, Mridha, M. F., Okuyama, Yuichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600161/ https://www.ncbi.nlm.nih.gov/pubmed/37880386 http://dx.doi.org/10.1038/s41598-023-45406-7 |
Ejemplares similares
-
An Enhanced Ensemble Deep Neural Network Approach for Elderly Fall Detection System Based on Wearable Sensors
por: Mohammad, Zabir, et al.
Publicado: (2023) -
Strategies for Enhancing the Multi-Stage Classification Performances of HER2 Breast Cancer from Hematoxylin and Eosin Images
por: Shovon, Md. Sakib Hossain, et al.
Publicado: (2022) -
Resilience toward supply disruptions: A stochastic inventory control model with partial backordering under the base stock policy
por: Taleizadeh, Ata Allah, et al.
Publicado: (2021) -
An Explainable Machine Learning Model for Material Backorder Prediction in Inventory Management
por: Ntakolia, Charis, et al.
Publicado: (2021) -
Pushing the Boundaries
Publicado: (2018)