Cargando…
Artificial intelligence models for methylene blue removal using functionalized carbon nanotubes
This study aims to assess the practicality of utilizing artificial intelligence (AI) to replicate the adsorption capability of functionalized carbon nanotubes (CNTs) in the context of methylene blue (MB) removal. The process of generating the carbon nanotubes involved the pyrolysis of acetylene unde...
Autores principales: | Mijwel, Abd-Alkhaliq Salih, Ahmed, Ali Najah, Afan, Haitham Abdulmohsin, Alayan, Haiyam Mohammed, Sherif, Mohsen, Elshafie, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600184/ https://www.ncbi.nlm.nih.gov/pubmed/37880280 http://dx.doi.org/10.1038/s41598-023-45032-3 |
Ejemplares similares
-
Feedforward Artificial Neural Network-Based Model for Predicting the Removal of Phenolic Compounds from Water by Using Deep Eutectic Solvent-Functionalized CNTs
por: Ibrahim, Rusul Khaleel, et al.
Publicado: (2020) -
Complex Extreme Sea Levels Prediction Analysis: Karachi Coast Case Study
por: Khan, Faisal Ahmed, et al.
Publicado: (2020) -
Optimised neural network model for river-nitrogen prediction utilizing a new training approach
por: Kumar, Pavitra, et al.
Publicado: (2020) -
Input attributes optimization using the feasibility of genetic nature inspired algorithm: Application of river flow forecasting
por: Afan, Haitham Abdulmohsin, et al.
Publicado: (2020) -
Highly Efficient Methylene Blue Dye Removal by Nickel Molybdate Nanosorbent
por: Rakass, Souad, et al.
Publicado: (2021)