Cargando…
Corrosion-driven droplet wetting on iron nanolayers
The classical Evans’ drop describes a drop of aqueous salt solution, placed on a bulk metal surface where it displays a corrosion pit that grows over time producing further oxide deposits from the metal dissolution. We focus here on the corrosion-induced droplet spreading using iron nanolayers whose...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600194/ https://www.ncbi.nlm.nih.gov/pubmed/37880431 http://dx.doi.org/10.1038/s41598-023-45547-9 |
Sumario: | The classical Evans’ drop describes a drop of aqueous salt solution, placed on a bulk metal surface where it displays a corrosion pit that grows over time producing further oxide deposits from the metal dissolution. We focus here on the corrosion-induced droplet spreading using iron nanolayers whose semi-transparency allowed us to monitor both iron corrosion propagation and electrolyte droplet behavior by simple optical means. We thus observed that pits grow under the droplet and merge into a corrosion front. This front reached the triple contact line and drove a non radial spreading, until it propagated outside the immobile droplet. Such chemically-active wetting is only observed in the presence of a conductive substrate that provides strong adhesion of the iron nanofilm to the substrate. By revisiting the classic Evan’s drop experiment on thick iron film, a weaker corrosion-driven droplet spreading is also identified. These results require further investigations, but they clearly open up new perspectives on substrate wetting by corrosion-like electrochemical reactions at the nanometer scale. |
---|