Cargando…
Predicting delirium in older non-intensive care unit inpatients: development and validation of the DELIrium risK Tool (DELIKT)
BACKGROUND: Effective delirium prevention could benefit from automatic risk stratification of older inpatients using routinely collected clinical data. AIM: Primary aim was to develop and validate a delirium prediction model (DELIKT) suitable for implementation in hospitals. Secondary aim was to sel...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600272/ https://www.ncbi.nlm.nih.gov/pubmed/37061661 http://dx.doi.org/10.1007/s11096-023-01566-0 |
Sumario: | BACKGROUND: Effective delirium prevention could benefit from automatic risk stratification of older inpatients using routinely collected clinical data. AIM: Primary aim was to develop and validate a delirium prediction model (DELIKT) suitable for implementation in hospitals. Secondary aim was to select an anticholinergic burden scale as a predictor. METHOD: We used one cohort for model development and another for validation with electronically available data collected within the first 24 h of admission. Included were patients aged ≥ 65, hospitalised ≥ 48 h with no stay > 24 h in an intensive care unit. Predictors, such as administrative and laboratory variables or an anticholinergic burden scale, were selected using a combination of feature selection filter method and forward/backward selection. The final model was based on logistic regression and the DELIKT was derived from the β-coefficients. We report the following performance measures: area under the curve, sensitivity, specificity and odds ratio. RESULTS: Both cohorts were similar and included over 10,000 patients each (mean age 77.6 ± 7.6 years) with 11% experiencing delirium. The model included nine variables: age, medical department, dementia, hemi-/paraplegia, catheterisation, potassium, creatinine, polypharmacy and the anticholinergic burden measured with the Clinician-rated Anticholinergic Scale (CrAS). The external validation yielded an AUC of 0.795. With a cut-off at 20 points in the DELIKT, we received a sensitivity of 79.7%, specificity of 62.3% and an odds ratio of 5.9 (95% CI 5.2, 6.7). CONCLUSION: The DELIKT is a potentially automatic tool with predictors from standard care including the CrAS to identify patients at high risk for delirium. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11096-023-01566-0. |
---|