Cargando…
Study on Green Nanofluid Profile Control and Displacement of Oil in a Low Permeability Reservoir
[Image: see text] Low permeability reservoirs are characterized by low permeability, small pore throat, strong heterogeneity, and poor injection-production ability. High shale content of the reservoir, strong pressure sensitivity, micropore undersaturation, and significant water-lock effect in water...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600877/ https://www.ncbi.nlm.nih.gov/pubmed/37901524 http://dx.doi.org/10.1021/acsomega.3c02853 |
Sumario: | [Image: see text] Low permeability reservoirs are characterized by low permeability, small pore throat, strong heterogeneity, and poor injection-production ability. High shale content of the reservoir, strong pressure sensitivity, micropore undersaturation, and significant water-lock effect in water injection development lead to increased fluid seepage resistance. There is an urgent need to adopt physical and chemical methods to supplement energy and improve infiltration efficiency, thereby forming effective methods for increasing the production and efficiency. Aiming at the characteristics of ultralow permeability reservoirs, in this paper, a green and environmental friendly biobased profile control and displacement agent (Bio Nano30) has been developed using noncovalent supramolecular interaction. Physical simulation experiments illustrate the profile control and displacement mechanism of Bio-Nano30. Laboratory experiments and field applications show that good results have been achieved in oil well plugging removal, water well pressure reduction and injection increase, and well group profile control and oil displacement. This research has good application prospects in low permeability heterogeneous reservoirs. |
---|