Cargando…

Patterns of brain dynamic functional connectivity are linked with attention-deficit/hyperactivity disorder-related behavioral and cognitive dimensions

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous neurodevelopmental disorder defined by characteristic behavioral and cognitive features. Abnormal brain dynamic functional connectivity (dFC) has been associated with the disorder. The full spectrum of ADHD-rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Lekai, Chen, Lizhou, Wang, Yuxia, Li, Qian, He, Ning, Li, Yuanyuan, You, Wanfang, Wang, Yaxuan, Long, Fenghua, Guo, Lanting, Luo, Kui, Sweeney, John A., Gong, Qiyong, Li, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600939/
https://www.ncbi.nlm.nih.gov/pubmed/36748350
http://dx.doi.org/10.1017/S0033291723000089
Descripción
Sumario:BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous neurodevelopmental disorder defined by characteristic behavioral and cognitive features. Abnormal brain dynamic functional connectivity (dFC) has been associated with the disorder. The full spectrum of ADHD-related variation of brain dynamics and its association with behavioral and cognitive features remain to be established. METHODS: We sought to identify patterns of brain dynamics linked to specific behavioral and cognitive dimensions using sparse canonical correlation analysis across a cohort of children with and without ADHD (122 children in total, 63 with ADHD). Then, using mediation analysis, we tested the hypothesis that cognitive deficits mediate the relationship between brain dynamics and ADHD-associated behaviors. RESULTS: We identified four distinct patterns of dFC, each corresponding to a specific dimension of behavioral or cognitive function (r = 0.811–0.879). Specifically, the inattention/hyperactivity dimension was positively associated with dFC within the default mode network (DMN) and negatively associated with dFC between DMN and the sensorimotor network (SMN); the somatization dimension was positively associated with dFC within DMN and SMN; the inhibition and flexibility dimension and fluency and memory dimensions were both positively associated with dFC within DMN and between DMN and SMN, and negatively associated with dFC between DMN and the fronto-parietal network. Furthermore, we observed that cognitive functions of inhibition and flexibility mediated the relationship between brain dynamics and behavioral manifestations of inattention and hyperactivity. CONCLUSIONS: These findings document the importance of distinct patterns of dynamic functional brain activity for different cardinal behavioral and cognitive features related to ADHD.