Cargando…

Dung beetle-associated yeasts display multiple stress tolerance: a desirable trait of potential industrial strains

BACKGROUND: Stress-tolerant yeasts are highly desirable for cost-effective bioprocessing. Several strategies have been documented to develop robust yeasts, such as genetic and metabolic engineering, artificial selection, and natural selection strategies, among others. However, the significant drawba...

Descripción completa

Detalles Bibliográficos
Autores principales: Nwaefuna, Anita Ejiro, Garcia-Aloy, Mar, Loeto, Daniel, Ncube, Thembekile, Gombert, Andreas K., Boekhout, Teun, Alwasel, Saleh, Zhou, Nerve
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601127/
https://www.ncbi.nlm.nih.gov/pubmed/37884896
http://dx.doi.org/10.1186/s12866-023-03044-z
Descripción
Sumario:BACKGROUND: Stress-tolerant yeasts are highly desirable for cost-effective bioprocessing. Several strategies have been documented to develop robust yeasts, such as genetic and metabolic engineering, artificial selection, and natural selection strategies, among others. However, the significant drawbacks of such techniques have motivated the exploration of naturally occurring stress-tolerant yeasts. We previously explored the biodiversity of non-conventional dung beetle-associated yeasts from extremophilic and pristine environments in Botswana (Nwaefuna AE et.al., Yeast, 2023). Here, we assessed their tolerance to industrially relevant stressors individually, such as elevated concentrations of osmolytes, organic acids, ethanol, and oxidizing agents, as well as elevated temperatures. RESULTS: Our findings suggest that these dung beetle-associated yeasts tolerate various stresses comparable to those of the robust bioethanol yeast strain, Saccharomyces cerevisiae (Ethanol Red™). Fifty-six percent of the yeast isolates were tolerant of temperatures up to 42 °C, 12.4% of them could tolerate ethanol concentrations up to 9% (v/v), 43.2% of them were tolerant to formic acid concentrations up to 20 mM, 22.7% were tolerant to acetic acid concentrations up to 45 mM, 34.0% of them could tolerate hydrogen peroxide up to 7 mM, and 44.3% of the yeasts could tolerate osmotic stress up to 1.5 M. CONCLUSION: The ability to tolerate multiple stresses is a desirable trait in the selection of novel production strains for diverse biotechnological applications, such as bioethanol production. Our study shows that the exploration of natural diversity in the search for stress-tolerant yeasts is an appealing approach for the development of robust yeasts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-023-03044-z.