Cargando…

Systemic biochemical changes in pepper (Capsicum annuum L.) against Rhizoctonia solani by kale (Brassica oleracea var. acephala L.) green manure application

BACKGROUND: In the search for new alternatives to avoid the problems associated with the use of synthetic chemical fungicides in agriculture, the use of green manure (GrM) could help combat fungal diseases of crops, such as those produced by the necrotrophic pathogen Rhizoctonia solani. In the case...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodríguez, Víctor M., Velasco, Pablo, Cartea, María Elena, Poveda, Jorge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601221/
https://www.ncbi.nlm.nih.gov/pubmed/37880578
http://dx.doi.org/10.1186/s12870-023-04525-z
Descripción
Sumario:BACKGROUND: In the search for new alternatives to avoid the problems associated with the use of synthetic chemical fungicides in agriculture, the use of green manure (GrM) could help combat fungal diseases of crops, such as those produced by the necrotrophic pathogen Rhizoctonia solani. In the case of the use of Brassica tissues as GrM, it could have an elicitor capacity for systemic plant resistance. RESULTS: We used kale leaves as a GrM and applied it to pepper plants infected with R. solani. The application of freeze-dried kale tissues to the roots of pepper plants produced a systemic activation of foliar defences via the salicylic acid (SA) and ethylene (ET) pathways, significantly reducing pathogen damage. In addition, this systemic response led to the accumulation of secondary defence metabolites, such as pipecolic acid, hydroxycoumarin and gluconic acid, in leaves. Remarkably, pepper plants treated with lyophilised kale GrM accumulated glucosinolates when infected with R. solani. We also confirmed that autoclaving removed part of the glucobrassicin (85%) and sinigrin (19%) content of the kale tissues. CONCLUSIONS: GrM kale tissues can activate systemic defences in bell pepper against foliar pathogens through SA/ET hormonal pathways, accumulating secondary defence metabolites.