Cargando…
GeoT: A Geometry-Aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning
[Image: see text] In recent years, molecular representation learning has emerged as a key area of focus in various chemical tasks. However, many existing models fail to fully consider the geometric information on molecular structures, resulting in less intuitive representations. Moreover, the widely...
Autores principales: | Kwak, Bumju, Park, Jiwon, Kang, Taewon, Jo, Jeonghee, Lee, Byunghan, Yoon, Sungroh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601421/ https://www.ncbi.nlm.nih.gov/pubmed/37901490 http://dx.doi.org/10.1021/acsomega.3c05753 |
Ejemplares similares
-
Flexible Dual-Branched Message-Passing Neural Network
for a Molecular Property Prediction
por: Jo, Jeonghee, et al.
Publicado: (2022) -
CASPER: context-aware scheme for paired-end reads from high-throughput amplicon sequencing
por: Kwon, Sunyoung, et al.
Publicado: (2014) -
A grammar for interpreting geo-analytical questions as concept transformations
por: Xu, Haiqi, et al.
Publicado: (2022) -
DUDE-Seq: Fast, flexible, and robust denoising for targeted amplicon sequencing
por: Lee, Byunghan, et al.
Publicado: (2017) -
Protein transfer learning improves identification of heat shock protein families
por: Min, Seonwoo, et al.
Publicado: (2021)