Cargando…
Machine Learning Density Functionals from the Random-Phase Approximation
[Image: see text] Kohn–Sham density functional theory (DFT) is the standard method for first-principles calculations in computational chemistry and materials science. More accurate theories such as the random-phase approximation (RPA) are limited in application due to their large computational cost....
Autores principales: | Riemelmoser, Stefan, Verdi, Carla, Kaltak, Merzuk, Kresse, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601474/ https://www.ncbi.nlm.nih.gov/pubmed/37800677 http://dx.doi.org/10.1021/acs.jctc.3c00848 |
Ejemplares similares
-
Machine-learned approximations to Density Functional Theory Hamiltonians
por: Hegde, Ganesh, et al.
Publicado: (2017) -
Quantum chemical accuracy from density functional approximations via machine learning
por: Bogojeski, Mihail, et al.
Publicado: (2020) -
Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles
por: Duan, Chenru, et al.
Publicado: (2021) -
Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods
por: Xu, Feng, et al.
Publicado: (2017) -
Generalized Many-Body Dispersion Correction through
Random-Phase Approximation for Chemically Accurate Density Functional
Theory
por: Poier, Pier Paolo, et al.
Publicado: (2023)