Cargando…

Accurate Thermochemical and Kinetic Parameters at Affordable Cost by Means of the Pisa Composite Scheme (PCS)

[Image: see text] A new strategy for the computation at an affordable cost of geometrical structures, thermochemical parameters, and rate constants for medium-sized molecules in the gas phase is proposed. The most distinctive features of the new model are the systematic use of cc-pVnZ-F12 basis sets...

Descripción completa

Detalles Bibliográficos
Autores principales: Barone, Vincenzo, Crisci, Luigi, Di Grande, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601482/
https://www.ncbi.nlm.nih.gov/pubmed/37774410
http://dx.doi.org/10.1021/acs.jctc.3c00817
Descripción
Sumario:[Image: see text] A new strategy for the computation at an affordable cost of geometrical structures, thermochemical parameters, and rate constants for medium-sized molecules in the gas phase is proposed. The most distinctive features of the new model are the systematic use of cc-pVnZ-F12 basis sets, the addition of MP2 core–valence correlation in geometry optimizations by a double-hybrid functional, the separate extrapolation of MP2 and post-MP2 contributions, and the inclusion of anharmonic contributions in zero-point energies and thermodynamic functions. A thorough benchmark based on a wide range of prototypical systems shows that the new scheme outperforms the most well-known model chemistries without the need for any empirical parameter. Additional tests show that the computed zero-point energies and thermal contributions can be confidently used for obtaining accurate thermochemical and kinetic parameters. Since the whole computational workflow is translated in a black-box procedure, which can be followed with standard electronic structure codes, the way is paved for the accurate yet not prohibitively expensive study of medium- to large-sized molecules also by nonspecialists.