Cargando…

Prefrontal Cortical Regulation of REM Sleep

Rapid-eye-movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram (EEG). The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger...

Descripción completa

Detalles Bibliográficos
Autores principales: Weber, Franz, Hong, Jiso, Lozano, David, Beier, Kevin, Chung, Shinjae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602053/
https://www.ncbi.nlm.nih.gov/pubmed/37886570
http://dx.doi.org/10.21203/rs.3.rs-1417511/v1
Descripción
Sumario:Rapid-eye-movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram (EEG). The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here, we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus (LH) and regulate phasic events, reflected in accelerated EEG theta oscillations and increased eye-movement density during REM sleep. Calcium imaging reveals that the majority of LH-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.