Cargando…
Optimal Designs for Nonlinear Mixed-effects Models Using Competitive Swarm Optimizer with Mutated Agents
Nature-inspired meta-heuristic algorithms are increasingly used in many disciplines to tackle challenging optimization problems. Our focus is to apply a newly proposed nature-inspired meta-heuristics algorithm called CSO-MA to solve challenging design problems in biosciences and demonstrate its flex...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602056/ https://www.ncbi.nlm.nih.gov/pubmed/37886528 http://dx.doi.org/10.21203/rs.3.rs-3389537/v1 |
Sumario: | Nature-inspired meta-heuristic algorithms are increasingly used in many disciplines to tackle challenging optimization problems. Our focus is to apply a newly proposed nature-inspired meta-heuristics algorithm called CSO-MA to solve challenging design problems in biosciences and demonstrate its flexibility to find various types of optimal approximate or exact designs for nonlinear mixed models with one or several interacting factors and with or without random effects. We show that CSO-MA is efficient and can frequently outperform other algorithms either in terms of speed or accuracy. The algorithm, like other meta-heuristic algorithms, is free of technical assumptions and flexible in that it can incorporate cost structure or multiple user-specified constraints, such as, a fixed number of measurements per subject in a longitudinal study. When possible, we confirm some of the CSO-MA generated designs are optimal with theory by developing theory-based innovative plots. Our applications include searching optimal designs to estimate (i) parameters in mixed nonlinear models with correlated random effects, (ii) a function of parameters for a count model in a dose combination study, and (iii) parameters in a HIV dynamic model. In each case, we show the advantages of using a meta-heuristic approach to solve the optimization problem, and the added benefits of the generated designs. |
---|