Cargando…
An Improved Method for Diagnosis of Parkinson’s Disease using Deep Learning Models Enhanced with Metaheuristic Algorithm
Accurate diagnosis of Parkinson's disease (PD) at an early stage is challenging for clinicians as its progression is very slow. Currently many machine learning and deep learning approaches are used for detection of PD and they are popular too. This study proposes four deep learning models and a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602096/ https://www.ncbi.nlm.nih.gov/pubmed/37886464 http://dx.doi.org/10.21203/rs.3.rs-3387953/v1 |
Sumario: | Accurate diagnosis of Parkinson's disease (PD) at an early stage is challenging for clinicians as its progression is very slow. Currently many machine learning and deep learning approaches are used for detection of PD and they are popular too. This study proposes four deep learning models and a hybrid model for the early detection of PD. Further to improve the performance of the models, grey wolf optimization (GWO) is used to automatically fine-tune the hyperparameters of the models. The simulation study is carried out using two standard datasets, T1,T2-weighted and SPECT DaTscan. The metaherustic enhanced deep learning models used are GWO-VGG16, GWO-DenseNet, GWO-DenseNet + LSTM, GWO-InceptionV3 and GWO-VGG16 + InceptionV3. Simulation results demonstrated that all the models perform well and obtained near above 99% of accuracy. The AUC-ROC score of 99.99 is achieved by the GWO-VGG16 + InceptionV3 and GWO-DenseNet models for T1, T2-weighted dataset. Similarly, the GWO-DenseNet, GWO-InceptionV3 and GWO-VGG16 + InceptionV3 models result an AUC-ROC score of 100 for SPECT DaTscan dataset. |
---|