Cargando…
Biomolecular condensates form spatially inhomogeneous network fluids
The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we de...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602126/ https://www.ncbi.nlm.nih.gov/pubmed/37886520 http://dx.doi.org/10.21203/rs.3.rs-3419423/v1 |
_version_ | 1785126330267860992 |
---|---|
author | Dar, Furqan Cohen, Samuel R. Mitrea, Diana M. Phillips, Aaron H. Nagy, Gergely Leite, Wellington C. Stanley, Christopher B. Choi, Jeong-Mo Kriwacki, Richard W. Pappu, Rohit V. |
author_facet | Dar, Furqan Cohen, Samuel R. Mitrea, Diana M. Phillips, Aaron H. Nagy, Gergely Leite, Wellington C. Stanley, Christopher B. Choi, Jeong-Mo Kriwacki, Richard W. Pappu, Rohit V. |
author_sort | Dar, Furqan |
collection | PubMed |
description | The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids. |
format | Online Article Text |
id | pubmed-10602126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-106021262023-10-27 Biomolecular condensates form spatially inhomogeneous network fluids Dar, Furqan Cohen, Samuel R. Mitrea, Diana M. Phillips, Aaron H. Nagy, Gergely Leite, Wellington C. Stanley, Christopher B. Choi, Jeong-Mo Kriwacki, Richard W. Pappu, Rohit V. Res Sq Article The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids. American Journal Experts 2023-10-18 /pmc/articles/PMC10602126/ /pubmed/37886520 http://dx.doi.org/10.21203/rs.3.rs-3419423/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Dar, Furqan Cohen, Samuel R. Mitrea, Diana M. Phillips, Aaron H. Nagy, Gergely Leite, Wellington C. Stanley, Christopher B. Choi, Jeong-Mo Kriwacki, Richard W. Pappu, Rohit V. Biomolecular condensates form spatially inhomogeneous network fluids |
title | Biomolecular condensates form spatially inhomogeneous network fluids |
title_full | Biomolecular condensates form spatially inhomogeneous network fluids |
title_fullStr | Biomolecular condensates form spatially inhomogeneous network fluids |
title_full_unstemmed | Biomolecular condensates form spatially inhomogeneous network fluids |
title_short | Biomolecular condensates form spatially inhomogeneous network fluids |
title_sort | biomolecular condensates form spatially inhomogeneous network fluids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602126/ https://www.ncbi.nlm.nih.gov/pubmed/37886520 http://dx.doi.org/10.21203/rs.3.rs-3419423/v1 |
work_keys_str_mv | AT darfurqan biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT cohensamuelr biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT mitreadianam biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT phillipsaaronh biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT nagygergely biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT leitewellingtonc biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT stanleychristopherb biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT choijeongmo biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT kriwackirichardw biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids AT pappurohitv biomolecularcondensatesformspatiallyinhomogeneousnetworkfluids |