Cargando…
A clustering approach to improve our understanding of the genetic and phenotypic complexity of chronic kidney disease
Chronic kidney disease (CKD) is a complex disorder that causes a gradual loss of kidney function, affecting approximately 9.1% of the world’s population. Here, we use a soft-clustering algorithm to deconstruct its genetic heterogeneity. First, we selected 322 CKD-associated independent genetic varia...
Autores principales: | Eoli, Andrea, Ibing, Susanne, Schurmann, Claudia, Nadkarni, Girish N., Heyne, Henrike, Böttinger, Erwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602158/ https://www.ncbi.nlm.nih.gov/pubmed/37886494 http://dx.doi.org/10.21203/rs.3.rs-3424565/v1 |
Ejemplares similares
-
A clustering approach to improve our understanding of the genetic and phenotypic complexity of chronic kidney disease
por: Eoli, A., et al.
Publicado: (2023) -
Implementation and evaluation of personal genetic testing as part of genomics analysis courses in German universities
por: Slosarek, Tamara, et al.
Publicado: (2023) -
Phe2vec: Automated disease phenotyping based on unsupervised embeddings from electronic health records
por: De Freitas, Jessica K., et al.
Publicado: (2021) -
Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis
por: Dapas, Matthew, et al.
Publicado: (2020) -
Predicting hypertension onset from longitudinal electronic health records with deep learning
por: Datta, Suparno, et al.
Publicado: (2022)