Cargando…
Power, measurement error, and pleiotropy robustness in twin-design extensions to Mendelian Randomization
Mendelian Randomization (MR) has become an important tool for causal inference in the health sciences. It takes advantage of the random segregation of alleles to control for background confounding factors. In brief, the method works by using genetic variants as instrumental variables, but it depends...
Autores principales: | Castro-de-Araujo, Luis FS, Singh, Madhurbain, Zhou, Yi, Vinh, Philip, Maes, Hermine HM, Verhulst, Brad, Dolan, Conor V, Neale, Michael C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602165/ https://www.ncbi.nlm.nih.gov/pubmed/37886585 http://dx.doi.org/10.21203/rs.3.rs-3411642/v1 |
Ejemplares similares
-
MR-DoC2: Bidirectional Causal Modeling with Instrumental Variables and Data from Relatives
por: Castro-de-Araujo, Luis F. S., et al.
Publicado: (2022) -
Pleiotropy robust methods for multivariable Mendelian randomization
por: Grant, Andrew J., et al.
Publicado: (2021) -
Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption
por: Hartwig, Fernando Pires, et al.
Publicado: (2017) -
Robust Mendelian randomization in the presence of residual population stratification, batch effects and horizontal pleiotropy
por: Cinelli, Carlos, et al.
Publicado: (2022) -
Extending Causality Tests with Genetic Instruments: An Integration of Mendelian Randomization with the Classical Twin Design
por: Minică, Camelia C., et al.
Publicado: (2018)