Cargando…

Peripheral Low Level Chronic LPS Injection as a Model of Neutrophil Activation in the Periphery and Brain in Mice

Lipopolysaccharide-induced (LPS) inflammation is used as model to understand the role of inflammation in brain diseases. However, no studies have assessed the ability of peripheral low-level chronic LPS to induce neutrophil activation in the brain. Subclinical levels of LPS were injected intraperito...

Descripción completa

Detalles Bibliográficos
Autores principales: Aries, Michelle, Cook, Makayla, Hensley-McBain, Tiffany
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602194/
https://www.ncbi.nlm.nih.gov/pubmed/37886552
http://dx.doi.org/10.21203/rs.3.rs-3443401/v1
Descripción
Sumario:Lipopolysaccharide-induced (LPS) inflammation is used as model to understand the role of inflammation in brain diseases. However, no studies have assessed the ability of peripheral low-level chronic LPS to induce neutrophil activation in the brain. Subclinical levels of LPS were injected intraperitoneally into mice to investigate impacts on neutrophil frequency and activation. Neutrophil activation, as measured by CD11b expression, peaked in the periphery after 4 weeks of weekly injections. Neutrophil frequency and activation increased in the periphery 4–12 hours and 4–8 hours after the fourth and final injection, respectively. Increased levels of G-CSF, TNFa, IL-6, and CXCL2 were observed in the plasma along with increased neutrophil elastase, a marker of neutrophil extracellular traps, peaking 4 hours following the final injection. Neutrophils and neutrophil activation were increased in the brain of LPS injected mice when compared to saline-injected mice 4 hours and 4–8 hours after the final injection, respectively. These results indicate that subclinical levels of peripheral LPS induces neutrophil activation in the periphery and brain. This model of chronic low-level systemic inflammation could be used to understand how neutrophils may act as mediators of the periphery-brain axis of inflammation with age and/or in mouse models of neurodegenerative or neuroinflammatory disease.