Cargando…
Combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model
PURPOSE: To characterize intratumoral immune cell trafficking in ablated and synchronous tumors following combined radiofrequency ablation (RFA) and systemic liposomal granulocyte-macrophage colony stimulation factor (lip-GM-CSF). METHODS: Phase I, 72 rats with single subcutaneous R3230 adenocarcino...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602257/ https://www.ncbi.nlm.nih.gov/pubmed/37883367 http://dx.doi.org/10.1371/journal.pone.0293141 |
_version_ | 1785126359602823168 |
---|---|
author | Moussa, Marwan Chowdhury, Md. Raihan Mwin, David Fatih, Mohamed Selveraj, Gokul Abdelmonem, Ahmed Farghaly, Mohamed Dou, Qianhui Filipczak, Nina Levchenko, Tatyana Torchilin, Vladimir P. Boussiotis, Vassiliki Goldberg, S. Nahum Ahmed, Muneeb |
author_facet | Moussa, Marwan Chowdhury, Md. Raihan Mwin, David Fatih, Mohamed Selveraj, Gokul Abdelmonem, Ahmed Farghaly, Mohamed Dou, Qianhui Filipczak, Nina Levchenko, Tatyana Torchilin, Vladimir P. Boussiotis, Vassiliki Goldberg, S. Nahum Ahmed, Muneeb |
author_sort | Moussa, Marwan |
collection | PubMed |
description | PURPOSE: To characterize intratumoral immune cell trafficking in ablated and synchronous tumors following combined radiofrequency ablation (RFA) and systemic liposomal granulocyte-macrophage colony stimulation factor (lip-GM-CSF). METHODS: Phase I, 72 rats with single subcutaneous R3230 adenocarcinoma were randomized to 6 groups: a) sham; b&c) free or liposomal GM-CSF alone; d) RFA alone; or e&f) combined with blank liposomes or lip-GM-CSF. Animals were sacrificed 3 and 7 days post-RFA. Outcomes included immunohistochemistry of dendritic cells (DCs), M1 and M2 macrophages, T-helper cells (Th1) (CD4(+)), cytotoxic T- lymphocytes (CTL) (CD8(+)), T-regulator cells (T-reg) (FoxP3(+)) and Fas Ligand activated CTLs (Fas-L(+)) in the periablational rim and untreated index tumor. M1/M2, CD4(+)/CD8(+) and CD8(+)/FoxP3(+) ratios were calculated. Phase II, 40 rats with double tumors were randomized to 4 groups: a) sham, b) RFA, c) RFA-BL and d) RFA-lip-GM-CSF. Synchronous untreated tumors collected at 7d were analyzed similarly. RESULTS: RFA-lip-GMCSF increased periablational M1, CTL and CD8(+)/FoxP3(+) ratio at 3 and 7d, and activated CTLs 7d post-RFA (p<0.05). RFA-lip-GMSCF also increased M2, T-reg, and reduced CD4(+)/CD8(+) 3 and 7d post-RFA respectively (p<0.05). In untreated index tumor, RFA-lip-GMCSF improved DCs, M1, CTLs and activated CTL 7d post-RFA (p<0.05). Furthermore, RFA-lip-GMSCF increased M2 at 3 and 7d, and T-reg 7d post-RFA (p<0.05). In synchronous tumors, RFA-BL and RFA-lip-GM-CSF improved DC, Th1 and CTL infiltration 7d post-RFA. CONCLUSION: Systemic liposomal GM-CSF combined with RFA improves intratumoral immune cell trafficking, specifically populations initiating (DC, M1) and executing (CTL, FasL(+)) anti-tumor immunity. Moreover, liposomes influence synchronous untreated metastases increasing Th1, CTL and DCs infiltration. |
format | Online Article Text |
id | pubmed-10602257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106022572023-10-27 Combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model Moussa, Marwan Chowdhury, Md. Raihan Mwin, David Fatih, Mohamed Selveraj, Gokul Abdelmonem, Ahmed Farghaly, Mohamed Dou, Qianhui Filipczak, Nina Levchenko, Tatyana Torchilin, Vladimir P. Boussiotis, Vassiliki Goldberg, S. Nahum Ahmed, Muneeb PLoS One Research Article PURPOSE: To characterize intratumoral immune cell trafficking in ablated and synchronous tumors following combined radiofrequency ablation (RFA) and systemic liposomal granulocyte-macrophage colony stimulation factor (lip-GM-CSF). METHODS: Phase I, 72 rats with single subcutaneous R3230 adenocarcinoma were randomized to 6 groups: a) sham; b&c) free or liposomal GM-CSF alone; d) RFA alone; or e&f) combined with blank liposomes or lip-GM-CSF. Animals were sacrificed 3 and 7 days post-RFA. Outcomes included immunohistochemistry of dendritic cells (DCs), M1 and M2 macrophages, T-helper cells (Th1) (CD4(+)), cytotoxic T- lymphocytes (CTL) (CD8(+)), T-regulator cells (T-reg) (FoxP3(+)) and Fas Ligand activated CTLs (Fas-L(+)) in the periablational rim and untreated index tumor. M1/M2, CD4(+)/CD8(+) and CD8(+)/FoxP3(+) ratios were calculated. Phase II, 40 rats with double tumors were randomized to 4 groups: a) sham, b) RFA, c) RFA-BL and d) RFA-lip-GM-CSF. Synchronous untreated tumors collected at 7d were analyzed similarly. RESULTS: RFA-lip-GMCSF increased periablational M1, CTL and CD8(+)/FoxP3(+) ratio at 3 and 7d, and activated CTLs 7d post-RFA (p<0.05). RFA-lip-GMSCF also increased M2, T-reg, and reduced CD4(+)/CD8(+) 3 and 7d post-RFA respectively (p<0.05). In untreated index tumor, RFA-lip-GMCSF improved DCs, M1, CTLs and activated CTL 7d post-RFA (p<0.05). Furthermore, RFA-lip-GMSCF increased M2 at 3 and 7d, and T-reg 7d post-RFA (p<0.05). In synchronous tumors, RFA-BL and RFA-lip-GM-CSF improved DC, Th1 and CTL infiltration 7d post-RFA. CONCLUSION: Systemic liposomal GM-CSF combined with RFA improves intratumoral immune cell trafficking, specifically populations initiating (DC, M1) and executing (CTL, FasL(+)) anti-tumor immunity. Moreover, liposomes influence synchronous untreated metastases increasing Th1, CTL and DCs infiltration. Public Library of Science 2023-10-26 /pmc/articles/PMC10602257/ /pubmed/37883367 http://dx.doi.org/10.1371/journal.pone.0293141 Text en © 2023 Moussa et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Moussa, Marwan Chowdhury, Md. Raihan Mwin, David Fatih, Mohamed Selveraj, Gokul Abdelmonem, Ahmed Farghaly, Mohamed Dou, Qianhui Filipczak, Nina Levchenko, Tatyana Torchilin, Vladimir P. Boussiotis, Vassiliki Goldberg, S. Nahum Ahmed, Muneeb Combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model |
title | Combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model |
title_full | Combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model |
title_fullStr | Combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model |
title_full_unstemmed | Combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model |
title_short | Combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model |
title_sort | combined thermal ablation and liposomal granulocyte-macrophage colony stimulation factor increases immune cell trafficking in a small animal tumor model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602257/ https://www.ncbi.nlm.nih.gov/pubmed/37883367 http://dx.doi.org/10.1371/journal.pone.0293141 |
work_keys_str_mv | AT moussamarwan combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT chowdhurymdraihan combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT mwindavid combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT fatihmohamed combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT selverajgokul combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT abdelmonemahmed combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT farghalymohamed combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT douqianhui combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT filipczaknina combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT levchenkotatyana combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT torchilinvladimirp combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT boussiotisvassiliki combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT goldbergsnahum combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel AT ahmedmuneeb combinedthermalablationandliposomalgranulocytemacrophagecolonystimulationfactorincreasesimmunecelltraffickinginasmallanimaltumormodel |