Cargando…
Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival
There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly puri...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602308/ https://www.ncbi.nlm.nih.gov/pubmed/37883333 http://dx.doi.org/10.1371/journal.pbio.3002341 |
_version_ | 1785126373019353088 |
---|---|
author | Bichet, Marion C. Adderley, Jack Avellaneda-Franco, Laura Magnin-Bougma, Isabelle Torriero-Smith, Natasha Gearing, Linden J. Deffrasnes, Celine David, Cassandra Pepin, Genevieve Gantier, Michael P. Lin, Ruby CY Patwa, Ruzeen Moseley, Gregory W. Doerig, Christian Barr, Jeremy J. |
author_facet | Bichet, Marion C. Adderley, Jack Avellaneda-Franco, Laura Magnin-Bougma, Isabelle Torriero-Smith, Natasha Gearing, Linden J. Deffrasnes, Celine David, Cassandra Pepin, Genevieve Gantier, Michael P. Lin, Ruby CY Patwa, Ruzeen Moseley, Gregory W. Doerig, Christian Barr, Jeremy J. |
author_sort | Bichet, Marion C. |
collection | PubMed |
description | There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism. |
format | Online Article Text |
id | pubmed-10602308 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106023082023-10-27 Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival Bichet, Marion C. Adderley, Jack Avellaneda-Franco, Laura Magnin-Bougma, Isabelle Torriero-Smith, Natasha Gearing, Linden J. Deffrasnes, Celine David, Cassandra Pepin, Genevieve Gantier, Michael P. Lin, Ruby CY Patwa, Ruzeen Moseley, Gregory W. Doerig, Christian Barr, Jeremy J. PLoS Biol Short Reports There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism. Public Library of Science 2023-10-26 /pmc/articles/PMC10602308/ /pubmed/37883333 http://dx.doi.org/10.1371/journal.pbio.3002341 Text en © 2023 Bichet et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Short Reports Bichet, Marion C. Adderley, Jack Avellaneda-Franco, Laura Magnin-Bougma, Isabelle Torriero-Smith, Natasha Gearing, Linden J. Deffrasnes, Celine David, Cassandra Pepin, Genevieve Gantier, Michael P. Lin, Ruby CY Patwa, Ruzeen Moseley, Gregory W. Doerig, Christian Barr, Jeremy J. Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival |
title | Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival |
title_full | Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival |
title_fullStr | Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival |
title_full_unstemmed | Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival |
title_short | Mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival |
title_sort | mammalian cells internalize bacteriophages and use them as a resource to enhance cellular growth and survival |
topic | Short Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602308/ https://www.ncbi.nlm.nih.gov/pubmed/37883333 http://dx.doi.org/10.1371/journal.pbio.3002341 |
work_keys_str_mv | AT bichetmarionc mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT adderleyjack mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT avellanedafrancolaura mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT magninbougmaisabelle mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT torrierosmithnatasha mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT gearinglindenj mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT deffrasnesceline mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT davidcassandra mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT pepingenevieve mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT gantiermichaelp mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT linrubycy mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT patwaruzeen mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT moseleygregoryw mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT doerigchristian mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival AT barrjeremyj mammaliancellsinternalizebacteriophagesandusethemasaresourcetoenhancecellulargrowthandsurvival |