Cargando…

Establishing brain states in neuroimaging data

The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience—from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge t...

Descripción completa

Detalles Bibliográficos
Autores principales: Dezhina, Zalina, Smallwood, Jonathan, Xu, Ting, Turkheimer, Federico E., Moran, Rosalyn J., Friston, Karl J., Leech, Robert, Fagerholm, Erik D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602380/
https://www.ncbi.nlm.nih.gov/pubmed/37844124
http://dx.doi.org/10.1371/journal.pcbi.1011571
Descripción
Sumario:The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience—from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the ’state’ of a system—i.e., a specification of the system’s future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.