Cargando…
Batch normalization followed by merging is powerful for phenotype prediction integrating multiple heterogeneous studies
Heterogeneity in different genomic studies compromises the performance of machine learning models in cross-study phenotype predictions. Overcoming heterogeneity when incorporating different studies in terms of phenotype prediction is a challenging and critical step for developing machine learning al...
Autores principales: | Gao, Yilin, Sun, Fengzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602384/ https://www.ncbi.nlm.nih.gov/pubmed/37844077 http://dx.doi.org/10.1371/journal.pcbi.1010608 |
Ejemplares similares
-
Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data
por: Li, Yongjin, et al.
Publicado: (2012) -
On data normalization and batch-effect correction for tumor subtyping with microRNA data
por: Wu, Yilin, et al.
Publicado: (2023) -
Merging heterogeneous clinical data to enable knowledge discovery
por: Seneviratne, Martin G., et al.
Publicado: (2019) -
Increasing prediction performance of colorectal cancer disease status using random forests classification based on metagenomic shotgun sequencing data
por: Gao, Yilin, et al.
Publicado: (2022) -
Merging Arcs to Produce Acyclic Phylogenetic Networks and Normal Networks
por: Willson, Stephen J.
Publicado: (2022)