Cargando…

Non‐Fermi‐Liquid Behavior of Superconducting SnH(4)

The chemical interaction of Sn with H(2) by X‐ray diffraction methods at pressures of 180–210 GPa is studied. A previously unknown tetrahydride SnH(4) with a cubic structure (fcc) exhibiting superconducting properties below T (C) = 72 K is obtained; the formation of a high molecular C2/m‐SnH(14) sup...

Descripción completa

Detalles Bibliográficos
Autores principales: Troyan, Ivan A., Semenok, Dmitrii V., Ivanova, Anna G., Sadakov, Andrey V., Zhou, Di, Kvashnin, Alexander G., Kruglov, Ivan A., Sobolevskiy, Oleg A., Lyubutina, Marianna V., Perekalin, Dmitry S., Helm, Toni, Tozer, Stanley W., Bykov, Maxim, Goncharov, Alexander F., Pudalov, Vladimir M., Lyubutin, Igor S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602579/
https://www.ncbi.nlm.nih.gov/pubmed/37626451
http://dx.doi.org/10.1002/advs.202303622
_version_ 1785126413505921024
author Troyan, Ivan A.
Semenok, Dmitrii V.
Ivanova, Anna G.
Sadakov, Andrey V.
Zhou, Di
Kvashnin, Alexander G.
Kruglov, Ivan A.
Sobolevskiy, Oleg A.
Lyubutina, Marianna V.
Perekalin, Dmitry S.
Helm, Toni
Tozer, Stanley W.
Bykov, Maxim
Goncharov, Alexander F.
Pudalov, Vladimir M.
Lyubutin, Igor S.
author_facet Troyan, Ivan A.
Semenok, Dmitrii V.
Ivanova, Anna G.
Sadakov, Andrey V.
Zhou, Di
Kvashnin, Alexander G.
Kruglov, Ivan A.
Sobolevskiy, Oleg A.
Lyubutina, Marianna V.
Perekalin, Dmitry S.
Helm, Toni
Tozer, Stanley W.
Bykov, Maxim
Goncharov, Alexander F.
Pudalov, Vladimir M.
Lyubutin, Igor S.
author_sort Troyan, Ivan A.
collection PubMed
description The chemical interaction of Sn with H(2) by X‐ray diffraction methods at pressures of 180–210 GPa is studied. A previously unknown tetrahydride SnH(4) with a cubic structure (fcc) exhibiting superconducting properties below T (C) = 72 K is obtained; the formation of a high molecular C2/m‐SnH(14) superhydride and several lower hydrides, fcc SnH(2), and C2‐Sn(12)H(18), is also detected. The temperature dependence of critical current density J (C)(T) in SnH(4) yields the superconducting gap 2Δ(0) = 21.6 meV at 180 GPa. SnH(4) has unusual behavior in strong magnetic fields: B,T‐linear dependences of magnetoresistance and the upper critical magnetic field B (C2)(T) ∝ (T (C) – T). The latter contradicts the Wertheimer–Helfand–Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH(4) in non‐superconducting state exhibits a deviation from what is expected for phonon‐mediated scattering described by the Bloch‐Grüneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.
format Online
Article
Text
id pubmed-10602579
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106025792023-10-27 Non‐Fermi‐Liquid Behavior of Superconducting SnH(4) Troyan, Ivan A. Semenok, Dmitrii V. Ivanova, Anna G. Sadakov, Andrey V. Zhou, Di Kvashnin, Alexander G. Kruglov, Ivan A. Sobolevskiy, Oleg A. Lyubutina, Marianna V. Perekalin, Dmitry S. Helm, Toni Tozer, Stanley W. Bykov, Maxim Goncharov, Alexander F. Pudalov, Vladimir M. Lyubutin, Igor S. Adv Sci (Weinh) Research Articles The chemical interaction of Sn with H(2) by X‐ray diffraction methods at pressures of 180–210 GPa is studied. A previously unknown tetrahydride SnH(4) with a cubic structure (fcc) exhibiting superconducting properties below T (C) = 72 K is obtained; the formation of a high molecular C2/m‐SnH(14) superhydride and several lower hydrides, fcc SnH(2), and C2‐Sn(12)H(18), is also detected. The temperature dependence of critical current density J (C)(T) in SnH(4) yields the superconducting gap 2Δ(0) = 21.6 meV at 180 GPa. SnH(4) has unusual behavior in strong magnetic fields: B,T‐linear dependences of magnetoresistance and the upper critical magnetic field B (C2)(T) ∝ (T (C) – T). The latter contradicts the Wertheimer–Helfand–Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH(4) in non‐superconducting state exhibits a deviation from what is expected for phonon‐mediated scattering described by the Bloch‐Grüneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed. John Wiley and Sons Inc. 2023-08-25 /pmc/articles/PMC10602579/ /pubmed/37626451 http://dx.doi.org/10.1002/advs.202303622 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Troyan, Ivan A.
Semenok, Dmitrii V.
Ivanova, Anna G.
Sadakov, Andrey V.
Zhou, Di
Kvashnin, Alexander G.
Kruglov, Ivan A.
Sobolevskiy, Oleg A.
Lyubutina, Marianna V.
Perekalin, Dmitry S.
Helm, Toni
Tozer, Stanley W.
Bykov, Maxim
Goncharov, Alexander F.
Pudalov, Vladimir M.
Lyubutin, Igor S.
Non‐Fermi‐Liquid Behavior of Superconducting SnH(4)
title Non‐Fermi‐Liquid Behavior of Superconducting SnH(4)
title_full Non‐Fermi‐Liquid Behavior of Superconducting SnH(4)
title_fullStr Non‐Fermi‐Liquid Behavior of Superconducting SnH(4)
title_full_unstemmed Non‐Fermi‐Liquid Behavior of Superconducting SnH(4)
title_short Non‐Fermi‐Liquid Behavior of Superconducting SnH(4)
title_sort non‐fermi‐liquid behavior of superconducting snh(4)
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602579/
https://www.ncbi.nlm.nih.gov/pubmed/37626451
http://dx.doi.org/10.1002/advs.202303622
work_keys_str_mv AT troyanivana nonfermiliquidbehaviorofsuperconductingsnh4
AT semenokdmitriiv nonfermiliquidbehaviorofsuperconductingsnh4
AT ivanovaannag nonfermiliquidbehaviorofsuperconductingsnh4
AT sadakovandreyv nonfermiliquidbehaviorofsuperconductingsnh4
AT zhoudi nonfermiliquidbehaviorofsuperconductingsnh4
AT kvashninalexanderg nonfermiliquidbehaviorofsuperconductingsnh4
AT kruglovivana nonfermiliquidbehaviorofsuperconductingsnh4
AT sobolevskiyolega nonfermiliquidbehaviorofsuperconductingsnh4
AT lyubutinamariannav nonfermiliquidbehaviorofsuperconductingsnh4
AT perekalindmitrys nonfermiliquidbehaviorofsuperconductingsnh4
AT helmtoni nonfermiliquidbehaviorofsuperconductingsnh4
AT tozerstanleyw nonfermiliquidbehaviorofsuperconductingsnh4
AT bykovmaxim nonfermiliquidbehaviorofsuperconductingsnh4
AT goncharovalexanderf nonfermiliquidbehaviorofsuperconductingsnh4
AT pudalovvladimirm nonfermiliquidbehaviorofsuperconductingsnh4
AT lyubutinigors nonfermiliquidbehaviorofsuperconductingsnh4