Cargando…
Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber
Meiotic recombination drives genetic diversity and crop genome optimization. In plant breeding, parents with favorable traits are crossed to create elite varieties. Different hybridizations produce diverse types of segment reshuffling between homologous chromosomes. However, little is known about th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602612/ https://www.ncbi.nlm.nih.gov/pubmed/37530486 http://dx.doi.org/10.1093/plphys/kiad432 |
_version_ | 1785126419399966720 |
---|---|
author | Wang, Yanling Dong, Zhaonian Ma, Yalin Zheng, Yi Huang, Sanwen Yang, Xueyong |
author_facet | Wang, Yanling Dong, Zhaonian Ma, Yalin Zheng, Yi Huang, Sanwen Yang, Xueyong |
author_sort | Wang, Yanling |
collection | PubMed |
description | Meiotic recombination drives genetic diversity and crop genome optimization. In plant breeding, parents with favorable traits are crossed to create elite varieties. Different hybridizations produce diverse types of segment reshuffling between homologous chromosomes. However, little is known about the factors that cause hybrid-specific changes in crossovers (COs). Here, we constructed 2 F(2) populations from crosses between a semiwild and 2 domesticated cucumber (Cucumis sativus) accessions and examined CO events. COs mainly occurred around genes and differed unevenly along chromosomes between the 2 hybrids. Fine-scale CO distributions were suppressed in regions of heterozygous structural variations (SVs) and were accelerated by high sequence polymorphism. C. sativus RADiation sensitive 51A (CsRAD51A) binding, histone H3 lysine 4 trimethylation (H3K4me3) modification, chromatin accessibility, and hypomethylation were positively associated with global CO landscapes and in local DNA double-strand break (DSB) hotspots and genes. The frequency and suppression of COs could be roughly predicted based on multiomic information. Differences in CO events between hybrids could be partially traced to distinct genetic and epigenetic features and were significantly associated with specific DSB hotspots and heterozygous SVs. Our findings identify the genomic and epigenetic features that contribute to CO formation and hybrid-specific divergence in cucumber and provide theoretical support for selecting parental combinations and manipulating recombination events at target genomic regions during plant breeding. |
format | Online Article Text |
id | pubmed-10602612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-106026122023-10-27 Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber Wang, Yanling Dong, Zhaonian Ma, Yalin Zheng, Yi Huang, Sanwen Yang, Xueyong Plant Physiol Research Article Meiotic recombination drives genetic diversity and crop genome optimization. In plant breeding, parents with favorable traits are crossed to create elite varieties. Different hybridizations produce diverse types of segment reshuffling between homologous chromosomes. However, little is known about the factors that cause hybrid-specific changes in crossovers (COs). Here, we constructed 2 F(2) populations from crosses between a semiwild and 2 domesticated cucumber (Cucumis sativus) accessions and examined CO events. COs mainly occurred around genes and differed unevenly along chromosomes between the 2 hybrids. Fine-scale CO distributions were suppressed in regions of heterozygous structural variations (SVs) and were accelerated by high sequence polymorphism. C. sativus RADiation sensitive 51A (CsRAD51A) binding, histone H3 lysine 4 trimethylation (H3K4me3) modification, chromatin accessibility, and hypomethylation were positively associated with global CO landscapes and in local DNA double-strand break (DSB) hotspots and genes. The frequency and suppression of COs could be roughly predicted based on multiomic information. Differences in CO events between hybrids could be partially traced to distinct genetic and epigenetic features and were significantly associated with specific DSB hotspots and heterozygous SVs. Our findings identify the genomic and epigenetic features that contribute to CO formation and hybrid-specific divergence in cucumber and provide theoretical support for selecting parental combinations and manipulating recombination events at target genomic regions during plant breeding. Oxford University Press 2023-08-02 /pmc/articles/PMC10602612/ /pubmed/37530486 http://dx.doi.org/10.1093/plphys/kiad432 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of American Society of Plant Biologists. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Research Article Wang, Yanling Dong, Zhaonian Ma, Yalin Zheng, Yi Huang, Sanwen Yang, Xueyong Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber |
title | Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber |
title_full | Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber |
title_fullStr | Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber |
title_full_unstemmed | Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber |
title_short | Comprehensive dissection of meiotic DNA double-strand breaks and crossovers in cucumber |
title_sort | comprehensive dissection of meiotic dna double-strand breaks and crossovers in cucumber |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602612/ https://www.ncbi.nlm.nih.gov/pubmed/37530486 http://dx.doi.org/10.1093/plphys/kiad432 |
work_keys_str_mv | AT wangyanling comprehensivedissectionofmeioticdnadoublestrandbreaksandcrossoversincucumber AT dongzhaonian comprehensivedissectionofmeioticdnadoublestrandbreaksandcrossoversincucumber AT mayalin comprehensivedissectionofmeioticdnadoublestrandbreaksandcrossoversincucumber AT zhengyi comprehensivedissectionofmeioticdnadoublestrandbreaksandcrossoversincucumber AT huangsanwen comprehensivedissectionofmeioticdnadoublestrandbreaksandcrossoversincucumber AT yangxueyong comprehensivedissectionofmeioticdnadoublestrandbreaksandcrossoversincucumber |