Cargando…
5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress
A high temperature-humidity index during summer has deleterious effects on mitochondrial function, reducing oocyte developmental competence. 5-Aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) are both known to support mitochondrial function and have strong anti-oxidant and anti-apoptotic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society for Reproduction and Development
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602763/ https://www.ncbi.nlm.nih.gov/pubmed/37599082 http://dx.doi.org/10.1262/jrd.2023-038 |
_version_ | 1785126453095956480 |
---|---|
author | ELGENDY, Omnia KITAHARA, Go YAMADA, Kentaro TANIGUCHI, Shin OSAWA, Takeshi |
author_facet | ELGENDY, Omnia KITAHARA, Go YAMADA, Kentaro TANIGUCHI, Shin OSAWA, Takeshi |
author_sort | ELGENDY, Omnia |
collection | PubMed |
description | A high temperature-humidity index during summer has deleterious effects on mitochondrial function, reducing oocyte developmental competence. 5-Aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) are both known to support mitochondrial function and have strong anti-oxidant and anti-apoptotic activities. This study aimed to determine the mechanism of action of 5-ALA/SFC on oocyte quality. Bovine oocytes were collected from medium-sized follicles during summer (July–September, temperature-humidity index:76.6), cultured with 0, 1, 2, 4, and 8 µM 5-ALA with SFC at a molar ratio of 1:0.125, fertilized, and cultured for 10 days. The addition of 8/1 µM 5-ALA/SFC had a deleterious effect on oocyte cleavage rate in comparison with control oocytes, but did not affect the blastocyst rate, while 1/0.125 µM 5-ALA/SFC had a significantly higher increase in blastocyst rate than 8/1 µM 5-ALA/SFC. The addition of 1/0.125 and 2/0.25 µM 5-ALA/SFC improved oocyte quality by increasing the mitochondrial distribution pattern and metaphase-II oocytes, reducing reactive oxygen species and upregulating nuclear factor erythroid-2-related factor 2, heme oxygenase-1, and superoxide dismutase-1 in oocytes, and nuclear factor erythroid-2-related factor 2 and mitochondrial transcription factor A in cumulus cells. These results indicate that 1/0.125 and 2/0.25 µM 5-ALA/SFC may support oocyte quality and developmental competence and provide anti-oxidant actions in cumulus-oocyte complexes. |
format | Online Article Text |
id | pubmed-10602763 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Society for Reproduction and Development |
record_format | MEDLINE/PubMed |
spelling | pubmed-106027632023-10-28 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress ELGENDY, Omnia KITAHARA, Go YAMADA, Kentaro TANIGUCHI, Shin OSAWA, Takeshi J Reprod Dev Original Article A high temperature-humidity index during summer has deleterious effects on mitochondrial function, reducing oocyte developmental competence. 5-Aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) are both known to support mitochondrial function and have strong anti-oxidant and anti-apoptotic activities. This study aimed to determine the mechanism of action of 5-ALA/SFC on oocyte quality. Bovine oocytes were collected from medium-sized follicles during summer (July–September, temperature-humidity index:76.6), cultured with 0, 1, 2, 4, and 8 µM 5-ALA with SFC at a molar ratio of 1:0.125, fertilized, and cultured for 10 days. The addition of 8/1 µM 5-ALA/SFC had a deleterious effect on oocyte cleavage rate in comparison with control oocytes, but did not affect the blastocyst rate, while 1/0.125 µM 5-ALA/SFC had a significantly higher increase in blastocyst rate than 8/1 µM 5-ALA/SFC. The addition of 1/0.125 and 2/0.25 µM 5-ALA/SFC improved oocyte quality by increasing the mitochondrial distribution pattern and metaphase-II oocytes, reducing reactive oxygen species and upregulating nuclear factor erythroid-2-related factor 2, heme oxygenase-1, and superoxide dismutase-1 in oocytes, and nuclear factor erythroid-2-related factor 2 and mitochondrial transcription factor A in cumulus cells. These results indicate that 1/0.125 and 2/0.25 µM 5-ALA/SFC may support oocyte quality and developmental competence and provide anti-oxidant actions in cumulus-oocyte complexes. The Society for Reproduction and Development 2023-08-21 2023-10 /pmc/articles/PMC10602763/ /pubmed/37599082 http://dx.doi.org/10.1262/jrd.2023-038 Text en ©2023 Society for Reproduction and Development https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | Original Article ELGENDY, Omnia KITAHARA, Go YAMADA, Kentaro TANIGUCHI, Shin OSAWA, Takeshi 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress |
title | 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress |
title_full | 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress |
title_fullStr | 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress |
title_full_unstemmed | 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress |
title_short | 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress |
title_sort | 5-aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602763/ https://www.ncbi.nlm.nih.gov/pubmed/37599082 http://dx.doi.org/10.1262/jrd.2023-038 |
work_keys_str_mv | AT elgendyomnia 5aminolevulinicacidsodiumferrouscitrateimprovesthequalityofheatstressedbovineoocytesbyreducingoxidativestress AT kitaharago 5aminolevulinicacidsodiumferrouscitrateimprovesthequalityofheatstressedbovineoocytesbyreducingoxidativestress AT yamadakentaro 5aminolevulinicacidsodiumferrouscitrateimprovesthequalityofheatstressedbovineoocytesbyreducingoxidativestress AT taniguchishin 5aminolevulinicacidsodiumferrouscitrateimprovesthequalityofheatstressedbovineoocytesbyreducingoxidativestress AT osawatakeshi 5aminolevulinicacidsodiumferrouscitrateimprovesthequalityofheatstressedbovineoocytesbyreducingoxidativestress |