Cargando…

-1 Programmed ribosomal frameshifting in Class 2 umbravirus-like RNAs uses multiple long-distance interactions to shift between active and inactive structures and destabilize the frameshift stimulating element

Plus-strand RNA viruses frequently employ -1 programmed ribosomal frameshifting (-1 PRF) to maximize their coding capacity. Ribosomes can frameshift at a slippery sequence if progression is impeded by a frameshift stimulating element (FSE), which is generally a stable, complex, dynamic structure wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Mikkelsen, Anna A, Gao, Feng, Carino, Elizabeth, Bera, Sayanta, Simon, Anne E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602861/
https://www.ncbi.nlm.nih.gov/pubmed/37742076
http://dx.doi.org/10.1093/nar/gkad744
Descripción
Sumario:Plus-strand RNA viruses frequently employ -1 programmed ribosomal frameshifting (-1 PRF) to maximize their coding capacity. Ribosomes can frameshift at a slippery sequence if progression is impeded by a frameshift stimulating element (FSE), which is generally a stable, complex, dynamic structure with multiple conformations that contribute to the efficiency of -1 PRF. As FSE are usually analyzed separate from the viral genome, little is known about cis-acting long-distance interactions. Using full-length genomic RNA of umbravirus-like (ula)RNA citrus yellow vein associated virus (CY1) and translation in wheat germ extracts, six tertiary interactions were found associated with the CY1 FSE that span nearly three-quarters of the 2.7 kb genomic RNA. All six tertiary interactions are conserved in other Class 2 ulaRNAs and two are conserved in all ulaRNAs. Two sets of interactions comprise local and distal pseudoknots that involve overlapping FSE nucleotides and thus are structurally incompatible, suggesting that Class 2 FSEs assume multiple conformations. Importantly, two long-distance interactions connect with sequences on opposite sides of the critical FSE central stem, which would unzip the stem and destabilize the FSE. These latter interactions could allow a frameshifting ribosome to translate through a structurally disrupted upstream FSE that no longer blocks ribosome progression.