Cargando…

Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering

CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory. Empirical rules-of-thumb have been developed for only a narrow range of model organisms, and mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes a novel feature set and...

Descripción completa

Detalles Bibliográficos
Autores principales: Noshay, Jaclyn M, Walker, Tyler, Alexander, William G, Klingeman, Dawn M, Romero, Jonathon, Walker, Angelica M, Prates, Erica, Eckert, Carrie, Irle, Stephan, Kainer, David, Jacobson, Daniel A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602897/
https://www.ncbi.nlm.nih.gov/pubmed/37738140
http://dx.doi.org/10.1093/nar/gkad736
_version_ 1785126484043628544
author Noshay, Jaclyn M
Walker, Tyler
Alexander, William G
Klingeman, Dawn M
Romero, Jonathon
Walker, Angelica M
Prates, Erica
Eckert, Carrie
Irle, Stephan
Kainer, David
Jacobson, Daniel A
author_facet Noshay, Jaclyn M
Walker, Tyler
Alexander, William G
Klingeman, Dawn M
Romero, Jonathon
Walker, Angelica M
Prates, Erica
Eckert, Carrie
Irle, Stephan
Kainer, David
Jacobson, Daniel A
author_sort Noshay, Jaclyn M
collection PubMed
description CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory. Empirical rules-of-thumb have been developed for only a narrow range of model organisms, and mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes a novel feature set and new public resource, produced with quantum chemical tensors, for interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is performed using an explainable-artificial intelligence model: iterative Random Forest (iRF). By encoding quantitative attributes of position-specific sequences for Escherichia coli sgRNAs, we identify important traits for sgRNA design in bacterial species. Additionally, we show that expanding positional encoding to quantum descriptors of base-pair, dimer, trimer, and tetramer sequences captures intricate interactions in local and neighboring nucleotides of the target DNA. These features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapiens genomes. These novel encodings of sgRNAs enhance our understanding of the elaborate quantum biological processes involved in CRISPR-Cas9 machinery.
format Online
Article
Text
id pubmed-10602897
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-106028972023-10-28 Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering Noshay, Jaclyn M Walker, Tyler Alexander, William G Klingeman, Dawn M Romero, Jonathon Walker, Angelica M Prates, Erica Eckert, Carrie Irle, Stephan Kainer, David Jacobson, Daniel A Nucleic Acids Res Computational Biology CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory. Empirical rules-of-thumb have been developed for only a narrow range of model organisms, and mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes a novel feature set and new public resource, produced with quantum chemical tensors, for interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is performed using an explainable-artificial intelligence model: iterative Random Forest (iRF). By encoding quantitative attributes of position-specific sequences for Escherichia coli sgRNAs, we identify important traits for sgRNA design in bacterial species. Additionally, we show that expanding positional encoding to quantum descriptors of base-pair, dimer, trimer, and tetramer sequences captures intricate interactions in local and neighboring nucleotides of the target DNA. These features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapiens genomes. These novel encodings of sgRNAs enhance our understanding of the elaborate quantum biological processes involved in CRISPR-Cas9 machinery. Oxford University Press 2023-09-20 /pmc/articles/PMC10602897/ /pubmed/37738140 http://dx.doi.org/10.1093/nar/gkad736 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Computational Biology
Noshay, Jaclyn M
Walker, Tyler
Alexander, William G
Klingeman, Dawn M
Romero, Jonathon
Walker, Angelica M
Prates, Erica
Eckert, Carrie
Irle, Stephan
Kainer, David
Jacobson, Daniel A
Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering
title Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering
title_full Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering
title_fullStr Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering
title_full_unstemmed Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering
title_short Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering
title_sort quantum biological insights into crispr-cas9 sgrna efficiency from explainable-ai driven feature engineering
topic Computational Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602897/
https://www.ncbi.nlm.nih.gov/pubmed/37738140
http://dx.doi.org/10.1093/nar/gkad736
work_keys_str_mv AT noshayjaclynm quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT walkertyler quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT alexanderwilliamg quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT klingemandawnm quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT romerojonathon quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT walkerangelicam quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT prateserica quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT eckertcarrie quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT irlestephan quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT kainerdavid quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering
AT jacobsondaniela quantumbiologicalinsightsintocrisprcas9sgrnaefficiencyfromexplainableaidrivenfeatureengineering