Cargando…
Prognosis Individualized: Survival predictions for WHO grade II and III gliomas with a machine learning-based web application
WHO grade II and III gliomas demonstrate diverse biological behaviors resulting in variable survival outcomes. In the context of glioma prognosis, machine learning (ML) approaches could facilitate the navigation through the maze of factors influencing survival, aiding clinicians in generating more p...
Autores principales: | Karabacak, Mert, Jagtiani, Pemla, Carrasquilla, Alejandro, Germano, Isabelle M., Margetis, Konstantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603035/ https://www.ncbi.nlm.nih.gov/pubmed/37884599 http://dx.doi.org/10.1038/s41746-023-00948-y |
Ejemplares similares
-
Interpretable machine learning models to predict short-term postoperative outcomes following posterior cervical fusion
por: Karabacak, Mert, et al.
Publicado: (2023) -
A Machine Learning-Based Online Prediction Tool for Predicting Short-Term Postoperative Outcomes Following Spinal Tumor Resections
por: Karabacak, Mert, et al.
Publicado: (2023) -
Embracing Large Language Models for Medical Applications: Opportunities and Challenges
por: Karabacak, Mert, et al.
Publicado: (2023) -
Technical Optimization of Decompressive Craniectomy for Possible Conversion to Hinge Craniotomy in Traumatic Brain Injury
por: Ahmed, Abdul-Kareem, et al.
Publicado: (2023) -
Bevacizumab in recurrent WHO grades II–III glioma
por: Annakib, Soufyan, et al.
Publicado: (2023)