Cargando…
Estimating global identifiability using conditional mutual information in a Bayesian framework
A novel information-theoretic approach is proposed to assess the global practical identifiability of Bayesian statistical models. Based on the concept of conditional mutual information, an estimate of information gained for each model parameter is used to quantify the identifiability with practical...
Autores principales: | Bhola, Sahil, Duraisamy, Karthik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603099/ https://www.ncbi.nlm.nih.gov/pubmed/37884565 http://dx.doi.org/10.1038/s41598-023-44589-3 |
Ejemplares similares
-
Sparse Bayesian Learning for DOA Estimation with Mutual Coupling
por: Dai, Jisheng, et al.
Publicado: (2015) -
A Conditional Mutual Information Estimator for Mixed Data and an Associated Conditional Independence Test
por: Zan, Lei, et al.
Publicado: (2022) -
Identifying Statistical Dependence in Genomic Sequences via Mutual Information Estimates
por: Aktulga, Hasan Metin, et al.
Publicado: (2007) -
Estimating Conditional Transfer Entropy in Time Series Using Mutual Information and Nonlinear Prediction
por: Shahsavari Baboukani, Payam, et al.
Publicado: (2020) -
Mutual information estimation reveals global associations between stimuli and biological processes
por: Suzuki, Taiji, et al.
Publicado: (2009)