Cargando…
Applying machine learning EEG signal classification to emotion‑related brain anticipatory activity
Machine learning approaches have been fruitfully applied to several neurophysiological signal classification problems. Considering the relevance of emotion in human cognition and behaviour, an important application of machine learning has been found in the field of emotion identification based on ne...
Autores principales: | Bilucaglia, Marco, Duma, Gian Marco, Mento, Giovanni, Semenzato, Luca, Tressoldi, Patrizio E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603316/ https://www.ncbi.nlm.nih.gov/pubmed/37899775 http://dx.doi.org/10.12688/f1000research.22202.3 |
Ejemplares similares
-
Driving with Intuition: A Preregistered Study about the EEG Anticipation of Simulated Random Car Accidents
por: Duma, Gian Marco, et al.
Publicado: (2017) -
EEG correlation at a distance: A re-analysis of two studies using a machine learning approach
por: Bilucaglia, Marco, et al.
Publicado: (2019) -
Face specific neural anticipatory activity in infants 4 and 9 months old
por: Mento, Giovanni, et al.
Publicado: (2022) -
EEG correlates of social interaction at distance
por: Giroldini, William, et al.
Publicado: (2016) -
Grounding Adaptive Cognitive Control in the Intrinsic, Functional Brain Organization: An HD-EEG Resting State Investigation
por: Duma, Gian Marco, et al.
Publicado: (2021)