Cargando…
Facile synthesis of triazolo/benzazolo[2,1-b]quinazolinone derivatives catalyzed by a new deep eutectic mixture based on glucose, pregabalin and urea
In this study, a novel natural deep eutectic solvent was prepared from glucose, pregabalin, and urea. The prepared solvent was identified using a variety of techniques, including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), dif...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603617/ https://www.ncbi.nlm.nih.gov/pubmed/37901261 http://dx.doi.org/10.1039/d3ra05199d |
Sumario: | In this study, a novel natural deep eutectic solvent was prepared from glucose, pregabalin, and urea. The prepared solvent was identified using a variety of techniques, including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential thermal analysis (DTA), and refractive index measurements (RI). The prepared deep eutectic solvent was then utilized for the one-pot synthesis of quinazolinone derivatives. The yields of the product obtained with and without the catalyst were determined, providing insights into the catalytic efficiency of the system. This protocol offers several advantages, including mild reaction conditions, easy reagent preparation, a green process, short reaction times (2–60 min), high yields (80–99%), and a straightforward procedure with the possibility of catalyst reusability. |
---|