Cargando…

Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) provides high-resolution transcriptome data to understand the heterogeneity of cell populations at the single-cell level. The analysis of scRNA-seq data requires the utilization of numerous computational tools. However, nonexpert users usually exper...

Descripción completa

Detalles Bibliográficos
Autores principales: Umu, Sinan U, Rapp Vander-Elst, Karoline, Karlsen, Victoria T, Chouliara, Manto, Bækkevold, Espen Sønderaal, Jahnsen, Frode Lars, Domanska, Diana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603768/
https://www.ncbi.nlm.nih.gov/pubmed/37889009
http://dx.doi.org/10.1093/gigascience/giad091
_version_ 1785126676375535616
author Umu, Sinan U
Rapp Vander-Elst, Karoline
Karlsen, Victoria T
Chouliara, Manto
Bækkevold, Espen Sønderaal
Jahnsen, Frode Lars
Domanska, Diana
author_facet Umu, Sinan U
Rapp Vander-Elst, Karoline
Karlsen, Victoria T
Chouliara, Manto
Bækkevold, Espen Sønderaal
Jahnsen, Frode Lars
Domanska, Diana
author_sort Umu, Sinan U
collection PubMed
description BACKGROUND: Single-cell RNA sequencing (scRNA-seq) provides high-resolution transcriptome data to understand the heterogeneity of cell populations at the single-cell level. The analysis of scRNA-seq data requires the utilization of numerous computational tools. However, nonexpert users usually experience installation issues, a lack of critical functionality or batch analysis modes, and the steep learning curves of existing pipelines. RESULTS: We have developed cellsnake, a comprehensive, reproducible, and accessible single-cell data analysis workflow, to overcome these problems. Cellsnake offers advanced features for standard users and facilitates downstream analyses in both R and Python environments. It is also designed for easy integration into existing workflows, allowing for rapid analyses of multiple samples. CONCLUSION: As an open-source tool, cellsnake is accessible through Bioconda, PyPi, Docker, and GitHub, making it a cost-effective and user-friendly option for researchers. By using cellsnake, researchers can streamline the analysis of scRNA-seq data and gain insights into the complex biology of single cells.
format Online
Article
Text
id pubmed-10603768
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-106037682023-10-28 Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis Umu, Sinan U Rapp Vander-Elst, Karoline Karlsen, Victoria T Chouliara, Manto Bækkevold, Espen Sønderaal Jahnsen, Frode Lars Domanska, Diana Gigascience Research BACKGROUND: Single-cell RNA sequencing (scRNA-seq) provides high-resolution transcriptome data to understand the heterogeneity of cell populations at the single-cell level. The analysis of scRNA-seq data requires the utilization of numerous computational tools. However, nonexpert users usually experience installation issues, a lack of critical functionality or batch analysis modes, and the steep learning curves of existing pipelines. RESULTS: We have developed cellsnake, a comprehensive, reproducible, and accessible single-cell data analysis workflow, to overcome these problems. Cellsnake offers advanced features for standard users and facilitates downstream analyses in both R and Python environments. It is also designed for easy integration into existing workflows, allowing for rapid analyses of multiple samples. CONCLUSION: As an open-source tool, cellsnake is accessible through Bioconda, PyPi, Docker, and GitHub, making it a cost-effective and user-friendly option for researchers. By using cellsnake, researchers can streamline the analysis of scRNA-seq data and gain insights into the complex biology of single cells. Oxford University Press 2023-10-27 /pmc/articles/PMC10603768/ /pubmed/37889009 http://dx.doi.org/10.1093/gigascience/giad091 Text en © The Author(s) 2023. Published by Oxford University Press GigaScience. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Umu, Sinan U
Rapp Vander-Elst, Karoline
Karlsen, Victoria T
Chouliara, Manto
Bækkevold, Espen Sønderaal
Jahnsen, Frode Lars
Domanska, Diana
Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis
title Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis
title_full Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis
title_fullStr Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis
title_full_unstemmed Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis
title_short Cellsnake: a user-friendly tool for single-cell RNA sequencing analysis
title_sort cellsnake: a user-friendly tool for single-cell rna sequencing analysis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603768/
https://www.ncbi.nlm.nih.gov/pubmed/37889009
http://dx.doi.org/10.1093/gigascience/giad091
work_keys_str_mv AT umusinanu cellsnakeauserfriendlytoolforsinglecellrnasequencinganalysis
AT rappvanderelstkaroline cellsnakeauserfriendlytoolforsinglecellrnasequencinganalysis
AT karlsenvictoriat cellsnakeauserfriendlytoolforsinglecellrnasequencinganalysis
AT chouliaramanto cellsnakeauserfriendlytoolforsinglecellrnasequencinganalysis
AT bækkevoldespensønderaal cellsnakeauserfriendlytoolforsinglecellrnasequencinganalysis
AT jahnsenfrodelars cellsnakeauserfriendlytoolforsinglecellrnasequencinganalysis
AT domanskadiana cellsnakeauserfriendlytoolforsinglecellrnasequencinganalysis