Cargando…
Predicting the Diagnostic Information of Tandem Mass Spectra of Environmentally Relevant Compounds Using Machine Learning
[Image: see text] Acquisition and processing of informative tandem mass spectra (MS2) is crucial for numerous applications, including library-based (tentative) identification, feature prioritization, and prediction of chemical and toxicological characteristics. However, for environmentally relevant...
Autores principales: | Codrean, S., Kruit, B., Meekel, N., Vughs, D., Béen, F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603772/ https://www.ncbi.nlm.nih.gov/pubmed/37812582 http://dx.doi.org/10.1021/acs.analchem.3c03470 |
Ejemplares similares
-
Online Prioritization of Toxic Compounds in Water
Samples through Intelligent HRMS Data Acquisition
por: Meekel, Nienke, et al.
Publicado: (2021) -
An unsupervised machine learning method for assessing quality of tandem mass spectra
por: Lin, Wenjun, et al.
Publicado: (2012) -
Identification of metabolites from tandem mass spectra with a machine learning approach utilizing structural features
por: Li, Yuanyue, et al.
Publicado: (2020) -
Quality assessment of tandem mass spectra using support vector machine (SVM)
por: Zou, An-Min, et al.
Publicado: (2009) -
SPEQ: quality assessment of peptide tandem mass spectra with deep learning
por: Gholamizoj, Soroosh, et al.
Publicado: (2022)