Cargando…
Customized Loading of microRNA-126 to Small Extracellular Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial Infarction
[Image: see text] Small extracellular vesicles (sEVs) are promising for cell-based cardiac repair after myocardial infarction. These sEVs encapsulate potent cargo, including microRNAs (miRs), within a bilayer membrane that aids sEV uptake when administered to cells. However, despite their efficacy,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604069/ https://www.ncbi.nlm.nih.gov/pubmed/37715735 http://dx.doi.org/10.1021/acsnano.3c01534 |
_version_ | 1785126748029976576 |
---|---|
author | Bheri, Sruti Brown, Milton E. Park, Hyun-Ji Brazhkina, Olga Takaesu, Felipe Davis, Michael E. |
author_facet | Bheri, Sruti Brown, Milton E. Park, Hyun-Ji Brazhkina, Olga Takaesu, Felipe Davis, Michael E. |
author_sort | Bheri, Sruti |
collection | PubMed |
description | [Image: see text] Small extracellular vesicles (sEVs) are promising for cell-based cardiac repair after myocardial infarction. These sEVs encapsulate potent cargo, including microRNAs (miRs), within a bilayer membrane that aids sEV uptake when administered to cells. However, despite their efficacy, sEV therapies are limited by inconsistencies in the sEV release from parent cells and variability in cargo encapsulation. Synthetic sEV mimics with artificial bilayer membranes allow for cargo control but suffer poor stability and rapid clearance when administered in vivo. Here, we developed an sEV-like vehicle (ELV) using an electroporation technique, building upon our previously published work, and investigated the potency of delivering electroporated ELVs with pro-angiogenic miR-126 both in vitro and in vivo to a rat model of ischemia–reperfusion. We show that electroporated miR-126+ ELVs improve tube formation parameters when administered to 2D cultures of cardiac endothelial cells and improve both echocardiographic and histological parameters when delivered to a rat left ventricle after ischemia reperfusion injury. This work emphasizes the value of using electroporated ELVs as vehicles for delivery of select miR cargo for cardiac repair. |
format | Online Article Text |
id | pubmed-10604069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-106040692023-10-28 Customized Loading of microRNA-126 to Small Extracellular Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial Infarction Bheri, Sruti Brown, Milton E. Park, Hyun-Ji Brazhkina, Olga Takaesu, Felipe Davis, Michael E. ACS Nano [Image: see text] Small extracellular vesicles (sEVs) are promising for cell-based cardiac repair after myocardial infarction. These sEVs encapsulate potent cargo, including microRNAs (miRs), within a bilayer membrane that aids sEV uptake when administered to cells. However, despite their efficacy, sEV therapies are limited by inconsistencies in the sEV release from parent cells and variability in cargo encapsulation. Synthetic sEV mimics with artificial bilayer membranes allow for cargo control but suffer poor stability and rapid clearance when administered in vivo. Here, we developed an sEV-like vehicle (ELV) using an electroporation technique, building upon our previously published work, and investigated the potency of delivering electroporated ELVs with pro-angiogenic miR-126 both in vitro and in vivo to a rat model of ischemia–reperfusion. We show that electroporated miR-126+ ELVs improve tube formation parameters when administered to 2D cultures of cardiac endothelial cells and improve both echocardiographic and histological parameters when delivered to a rat left ventricle after ischemia reperfusion injury. This work emphasizes the value of using electroporated ELVs as vehicles for delivery of select miR cargo for cardiac repair. American Chemical Society 2023-09-16 /pmc/articles/PMC10604069/ /pubmed/37715735 http://dx.doi.org/10.1021/acsnano.3c01534 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Bheri, Sruti Brown, Milton E. Park, Hyun-Ji Brazhkina, Olga Takaesu, Felipe Davis, Michael E. Customized Loading of microRNA-126 to Small Extracellular Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial Infarction |
title | Customized
Loading of microRNA-126 to Small Extracellular
Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial
Infarction |
title_full | Customized
Loading of microRNA-126 to Small Extracellular
Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial
Infarction |
title_fullStr | Customized
Loading of microRNA-126 to Small Extracellular
Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial
Infarction |
title_full_unstemmed | Customized
Loading of microRNA-126 to Small Extracellular
Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial
Infarction |
title_short | Customized
Loading of microRNA-126 to Small Extracellular
Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial
Infarction |
title_sort | customized
loading of microrna-126 to small extracellular
vesicle-derived vehicles improves cardiac function after myocardial
infarction |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604069/ https://www.ncbi.nlm.nih.gov/pubmed/37715735 http://dx.doi.org/10.1021/acsnano.3c01534 |
work_keys_str_mv | AT bherisruti customizedloadingofmicrorna126tosmallextracellularvesiclederivedvehiclesimprovescardiacfunctionaftermyocardialinfarction AT brownmiltone customizedloadingofmicrorna126tosmallextracellularvesiclederivedvehiclesimprovescardiacfunctionaftermyocardialinfarction AT parkhyunji customizedloadingofmicrorna126tosmallextracellularvesiclederivedvehiclesimprovescardiacfunctionaftermyocardialinfarction AT brazhkinaolga customizedloadingofmicrorna126tosmallextracellularvesiclederivedvehiclesimprovescardiacfunctionaftermyocardialinfarction AT takaesufelipe customizedloadingofmicrorna126tosmallextracellularvesiclederivedvehiclesimprovescardiacfunctionaftermyocardialinfarction AT davismichaele customizedloadingofmicrorna126tosmallextracellularvesiclederivedvehiclesimprovescardiacfunctionaftermyocardialinfarction |