Cargando…

Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells

[Image: see text] Single-molecule fluorescence imaging experiments generally require sub-nanomolar protein concentrations to isolate single protein molecules, which makes such experiments challenging in live cells due to high intracellular protein concentrations. Here, we show that single-molecule o...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Sora, Klughammer, Nils, Barth, Anders, Tanenbaum, Marvin E., Dekker, Cees
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604100/
https://www.ncbi.nlm.nih.gov/pubmed/37791900
http://dx.doi.org/10.1021/acsnano.3c05959
_version_ 1785126755582869504
author Yang, Sora
Klughammer, Nils
Barth, Anders
Tanenbaum, Marvin E.
Dekker, Cees
author_facet Yang, Sora
Klughammer, Nils
Barth, Anders
Tanenbaum, Marvin E.
Dekker, Cees
author_sort Yang, Sora
collection PubMed
description [Image: see text] Single-molecule fluorescence imaging experiments generally require sub-nanomolar protein concentrations to isolate single protein molecules, which makes such experiments challenging in live cells due to high intracellular protein concentrations. Here, we show that single-molecule observations can be achieved in live cells through a drastic reduction in the observation volume using overmilled zero-mode waveguides (ZMWs- subwavelength-size holes in a metal film). Overmilling of the ZMW in a palladium film creates a nanowell of tunable size in the glass layer below the aperture, which cells can penetrate. We present a thorough theoretical and experimental characterization of the optical properties of these nanowells over a wide range of ZMW diameters and overmilling depths, showing an excellent signal confinement and a 5-fold fluorescence enhancement of fluorescent molecules inside nanowells. ZMW nanowells facilitate live-cell imaging as cells form stable protrusions into the nanowells. Importantly, the nanowells greatly reduce the cytoplasmic background fluorescence, enabling the detection of individual membrane-bound fluorophores in the presence of high cytoplasmic expression levels, which could not be achieved with TIRF microscopy. Zero-mode waveguide nanowells thus provide great potential to study individual proteins in living cells.
format Online
Article
Text
id pubmed-10604100
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-106041002023-10-28 Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells Yang, Sora Klughammer, Nils Barth, Anders Tanenbaum, Marvin E. Dekker, Cees ACS Nano [Image: see text] Single-molecule fluorescence imaging experiments generally require sub-nanomolar protein concentrations to isolate single protein molecules, which makes such experiments challenging in live cells due to high intracellular protein concentrations. Here, we show that single-molecule observations can be achieved in live cells through a drastic reduction in the observation volume using overmilled zero-mode waveguides (ZMWs- subwavelength-size holes in a metal film). Overmilling of the ZMW in a palladium film creates a nanowell of tunable size in the glass layer below the aperture, which cells can penetrate. We present a thorough theoretical and experimental characterization of the optical properties of these nanowells over a wide range of ZMW diameters and overmilling depths, showing an excellent signal confinement and a 5-fold fluorescence enhancement of fluorescent molecules inside nanowells. ZMW nanowells facilitate live-cell imaging as cells form stable protrusions into the nanowells. Importantly, the nanowells greatly reduce the cytoplasmic background fluorescence, enabling the detection of individual membrane-bound fluorophores in the presence of high cytoplasmic expression levels, which could not be achieved with TIRF microscopy. Zero-mode waveguide nanowells thus provide great potential to study individual proteins in living cells. American Chemical Society 2023-10-04 /pmc/articles/PMC10604100/ /pubmed/37791900 http://dx.doi.org/10.1021/acsnano.3c05959 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Yang, Sora
Klughammer, Nils
Barth, Anders
Tanenbaum, Marvin E.
Dekker, Cees
Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells
title Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells
title_full Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells
title_fullStr Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells
title_full_unstemmed Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells
title_short Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells
title_sort zero-mode waveguide nanowells for single-molecule detection in living cells
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604100/
https://www.ncbi.nlm.nih.gov/pubmed/37791900
http://dx.doi.org/10.1021/acsnano.3c05959
work_keys_str_mv AT yangsora zeromodewaveguidenanowellsforsinglemoleculedetectioninlivingcells
AT klughammernils zeromodewaveguidenanowellsforsinglemoleculedetectioninlivingcells
AT barthanders zeromodewaveguidenanowellsforsinglemoleculedetectioninlivingcells
AT tanenbaummarvine zeromodewaveguidenanowellsforsinglemoleculedetectioninlivingcells
AT dekkercees zeromodewaveguidenanowellsforsinglemoleculedetectioninlivingcells