Cargando…

Circulating and Urinary Concentrations of Malondialdehyde in Aging Humans in Health and Disease: Review and Discussion

(1) Background: Malondialdehyde (MDA) is a major and stable product of oxidative stress. MDA circulates in the blood and is excreted in the urine in its free and conjugated forms, notably with L-lysine and L-serine. MDA is the most frequently measured biomarker of oxidative stress, namely lipid pero...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsikas, Dimitrios, Tsikas, Stefanos A., Mikuteit, Marie, Ückert, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604150/
https://www.ncbi.nlm.nih.gov/pubmed/37893117
http://dx.doi.org/10.3390/biomedicines11102744
Descripción
Sumario:(1) Background: Malondialdehyde (MDA) is a major and stable product of oxidative stress. MDA circulates in the blood and is excreted in the urine in its free and conjugated forms, notably with L-lysine and L-serine. MDA is the most frequently measured biomarker of oxidative stress, namely lipid peroxidation. Oxidative stress is generally assumed to be associated with disease and to increase with age. Here, we review and discuss the literature concerning circulating and excretory MDA as a biomarker of lipid peroxidation in aging subjects with regard to health and disease, such as kidney disease, erectile dysfunction, and COVID-19. (2) Methods: Scientific articles, notably those reporting on circulating (plasma, serum) and urinary MDA, which concern health and disease, and which appeared in PubMed were considered; they formed the basis for evaluating the potential increase in oxidative stress, particularly lipid peroxidation, as humans age. (3) Results and Conclusions: The results reported in the literature thus far are contradictory. The articles considered in the present study are not supportive of the general view that oxidative stress increases with aging. Many functions of several organs, including the filtration efficiency of the kidneys, are physiologically reduced in men and women as they age. This effect is likely to result in the apparent “accumulation” of biomarkers of oxidative stress, concomitantly with the “accumulation” of biomarkers of an organ’s function, such as creatinine. How free and conjugated MDA forms are transported in various organs (including the brain) and how they are excreted in the urine via the kidney is not known, and investigating these questions should be the objective of forthcoming studies. The age- and gender-related increase in circulating creatinine might be a useful factor to be taken into consideration when investigating oxidative stress and aging.