Cargando…
An Efficient Binary Sand Cat Swarm Optimization for Feature Selection in High-Dimensional Biomedical Data
Recent breakthroughs are making a significant contribution to big data in biomedicine which are anticipated to assist in disease diagnosis and patient care management. To obtain relevant information from this data, effective administration and analysis are required. One of the major challenges assoc...
Autor principal: | Pashaei, Elnaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604175/ https://www.ncbi.nlm.nih.gov/pubmed/37892853 http://dx.doi.org/10.3390/bioengineering10101123 |
Ejemplares similares
-
Multi-Strategy Improved Sand Cat Swarm Optimization: Global Optimization and Feature Selection
por: Yao, Liguo, et al.
Publicado: (2023) -
Sand cat swarm optimization-based feedback controller design for nonlinear systems
por: Tavakol Aghaei, Vahid, et al.
Publicado: (2023) -
Adaptive feature selection using v-shaped binary particle swarm optimization
por: Teng, Xuyang, et al.
Publicado: (2017) -
Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm
por: Annavarapu, Chandra Sekhara Rao, et al.
Publicado: (2016) -
Feature Selection for High-Dimensional and Imbalanced Biomedical Data Based on Robust Correlation Based Redundancy and Binary Grasshopper Optimization Algorithm
por: Abdulrauf Sharifai, Garba, et al.
Publicado: (2020)